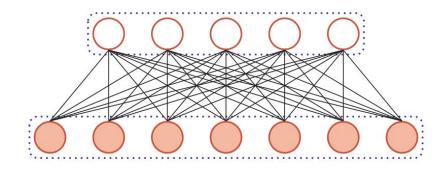
人工智能实践教程 从Python入门到机器学习

第三部分神经网络卷积神经网络

- 所有代码及ppt均可以由以下链接下载
- https://github.com/shao1chuan/pythonbook
- https://gitee.com/shao1chuan/pythonbook

全连接前馈神经网络

>权重矩阵的参数非常多



▶局部不变性特征

- ▶自然图像中的物体都具有局部不变性特征
 - P尺度缩放、平移、旋转等操作不影响其语义信息。
- 全连接前馈网络很难提取这些局部不变特征

卷积神经网络

- ▶ 卷积神经网络(Convolutional Neural Networks, CNN)
 - ▶ 一种前馈神经网络
 - ▶ 受生物学上感受野 (Receptive Field) 的机制而提出的
 - ▶ 在视觉神经系统中,一个神经元的感受野是指视网膜上的特定区域,只有这个区域内的刺激才能够激活该神经元。
- ▶ 卷积神经网络有三个结构上的特性:
 - 局部连接
 - ▶ 权重共享
 - > 空间或时间上的次采样

- > 卷积经常用在信号处理中,用于计算信号的延迟累积。
- 》假设一个信号发生器每个时刻t产生一个信号 x_t , 其信息的衰减率为 w_k , 即在 k-1个时间步长后,信息为原来的 w_k 倍
 - **人** 假设 $w_1 = 1, w_2 = 1/2, w_3 = 1/4$
- ▶ 时刻t收到的信号y_t 为当前时刻产生的信息和以前时刻延迟信息的叠加。

- > 卷积经常用在信号处理中,用于计算信号的延迟累积。
- 》假设一个信号发生器每个时刻t产生一个信号 x_t , 其信息的衰减率为 w_k , 即在 k-1个时间步长后, 信息为原来的 w_k 倍
 - ▶ 假设 $w_1 = 1, w_2 = 1/2, w_3 = 1/4$
- ▶ 时刻t收到的信号v_t 为当前时刻产生的信息和以前时刻延迟信息的叠加

$$y_{t} = 1 \times x_{t} + 1/2 \times x_{t-1} + 1/4 \times x_{t-2}$$

$$= w_{1} \times x_{t} + w_{2} \times x_{t-1} + w_{3} \times x_{t-2}$$

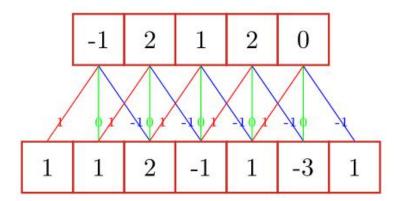
$$= \sum_{k=1}^{3} w_{k} \cdot x_{t-k+1}.$$

滤波器 (filter) 或卷积核 (convolution kernel)

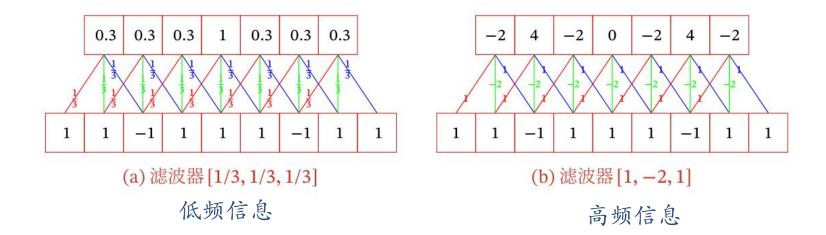
▶给定一个输入信号序列x和滤波器w,卷积的输出为:

$$y_t = \sum_{k=1}^K w_k x_{t-k+1}$$

Filter: [-1,0,1]



▶ 不同的滤波器来提取信号序列中的不同特征

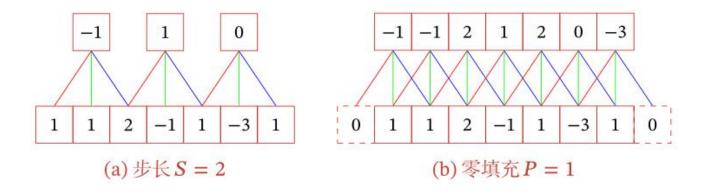


$$y''(u) = y(u + 1) + y(u - 1) - 2y(u)$$

二阶微分

卷积扩展

▶引入滤波器的滑动步长S和零填充P



卷积类型

- ▶ 卷积的结果按输出长度不同可以分为三类:
 - ▶ 窄卷积:步长�=1,两端不补零�=0,卷积后输出长度为�-◆+1
 - ▶ 宽卷积:步长�=1,两端补零�=�-1,卷积后输出长度�+�-1
 - ▶等宽卷积:步长�=1,两端补零�=(◆-1)/2,卷积后输出长度�

- ▶ 在早期的文献中, 卷积一般默认为窄卷积。
- ▶而目前的文献中, 卷积一般默认为等宽卷积。

两维卷积

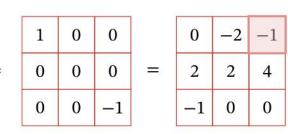
▶ 在图像处理中,图像是以二维矩阵的形式输入到神经网络中, 因此我们需要二维卷积。

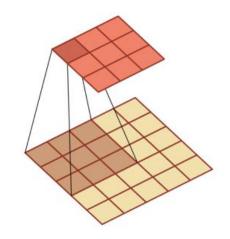
一个输入信息X和滤波器W的二维卷积定义为

$$Y = W * X$$
,

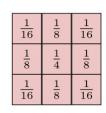
$$y_{ij} = \sum_{u=1}^{U} \sum_{v=1}^{V} w_{uv} x_{i-u+1,j-v+1}.$$

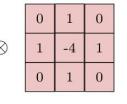
1	1	1 x_1	1 ×0	1	
-1	0	-3 ×0	0	1	
2	1	1 ×0	-1	0	*
0	-1	1	2	1	
1	2	1	1	1	



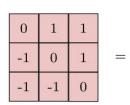


卷积作为特征提取器





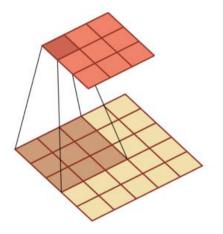
原始图像



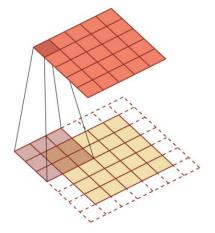
滤波器

输出特征映射

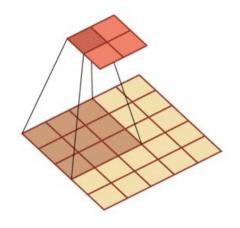
二维卷积



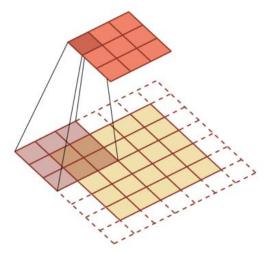
步长1, 零填充0



步长1, 零填充1



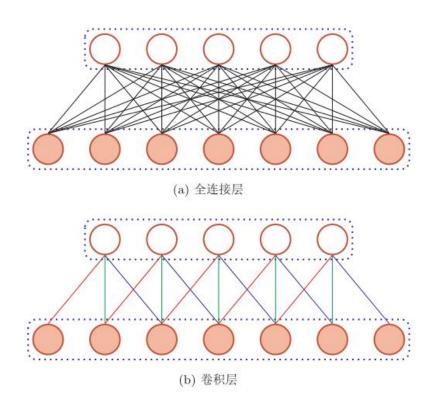
步长2, 零填充0



步长2, 零填充1

卷积神经网络

用卷积层代替全连接层



互相关

- > 计算卷积需要进行卷积核翻转。
- ▶ 卷积操作的目标: 提取特征。

翻转是不必要的!

> 互相关

$$y_{ij} = \sum_{u=1}^{m} \sum_{v=1}^{n} w_{uv} \cdot x_{i+u-1,j+v-1}$$

除非特别声明,卷积一般指"互相关"。

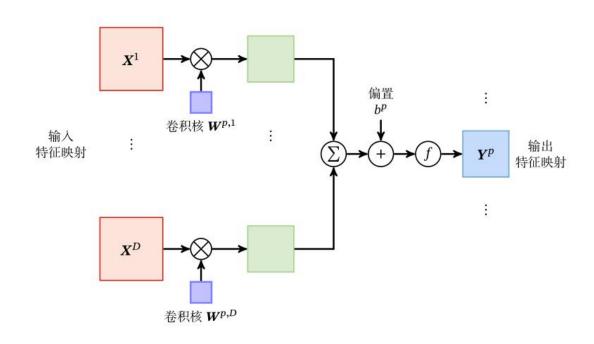
多个卷积核

- ▶特征映射 (Feature Map): 图像经过卷积后得到的特征。
 - ▶ 卷积核看成一个特征提取器

> 卷积层

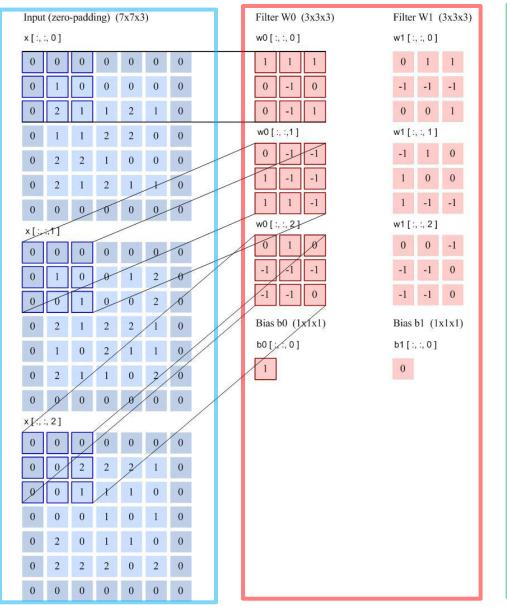
- ▶ 输入: D个特征映射 M×N×D
- ▶ 输出: P个特征映射 M' × N' × P

卷积层的映射关系



$$\mathbf{Z}^p = \mathbf{W}^p \otimes \mathbf{X} + b^p = \sum_{d=1}^D \mathbf{W}^{p,d} \otimes \mathbf{X}^d + b^p,$$

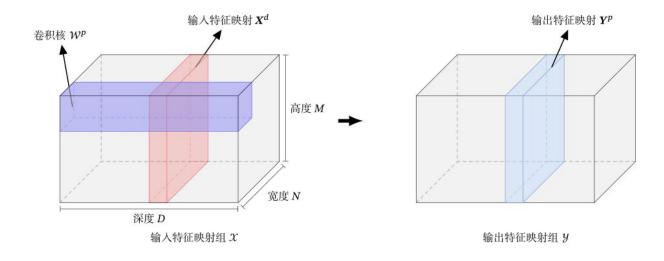
 $\mathbf{Y}^p = f(\mathbf{Z}^p).$



步长2 filter 3*3 filter个数6 零填充 1

卷积层

▶典型的卷积层为3维结构

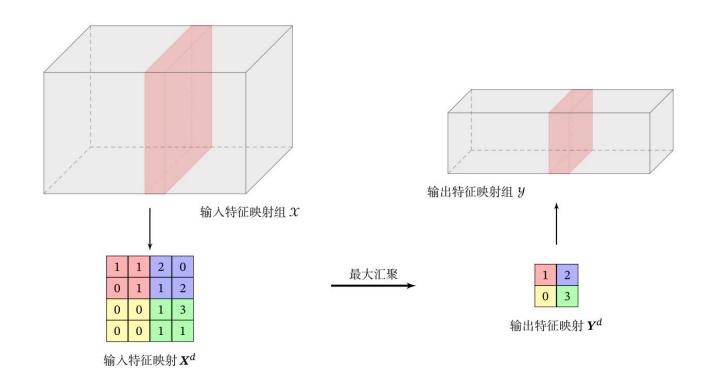


$$\mathbf{Z}^p = \mathbf{W}^p \otimes \mathbf{X} + b^p = \sum_{d=1}^D \mathbf{W}^{p,d} \otimes \mathbf{X}^d + b^p,$$

 $\mathbf{Y}^p = f(\mathbf{Z}^p).$

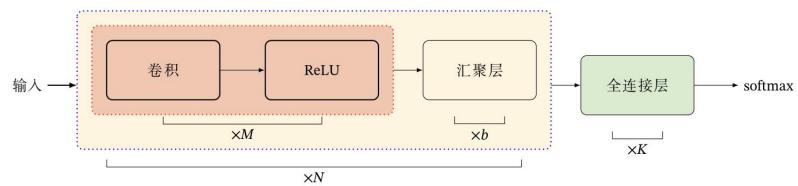
汇聚层

▶ 卷积层虽然可以显著减少连接的个数,但是每一个特征映射的神经元个数并没有显著减少。



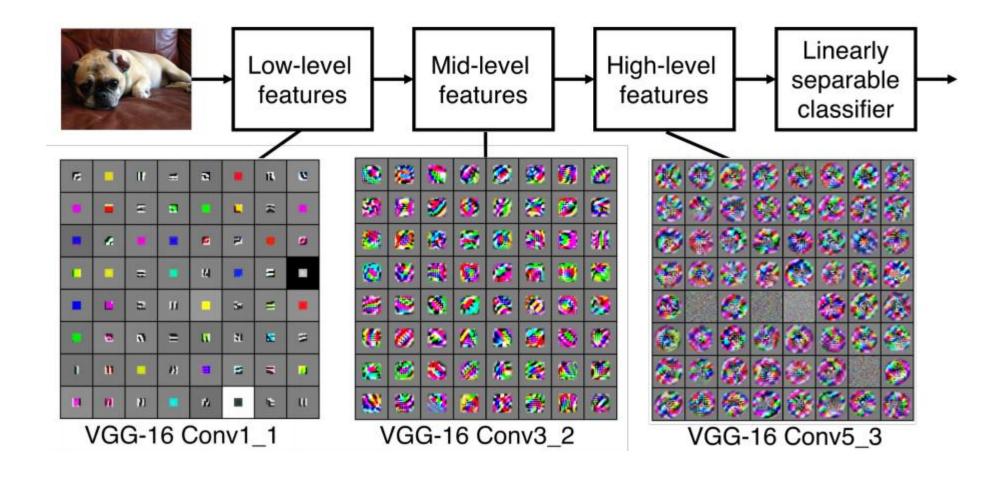
卷积网络结构

- ▶ 卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
 - ▶ 趋向于小卷积、大深度
 - ▶ 趋向于全卷积
- ▶典型结构

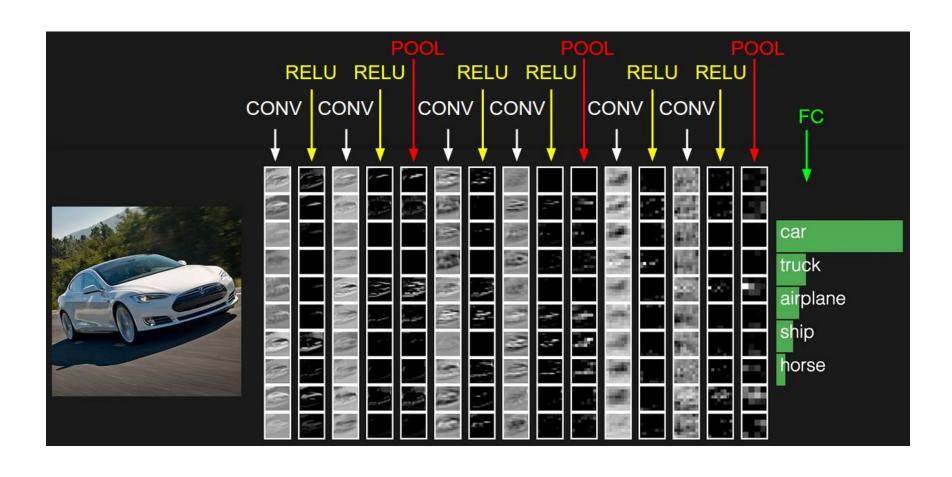


▶ 一个卷积块为连续M 个卷积层和b个汇聚层 (M通常设置为2~5,b为0或1)。一个卷积网络中可以堆叠N 个连续的卷积块,然后在接着K 个全连接层 (N 的取值区间比较大,比如1~100或者更大; K一般为0~2)。

表示学习



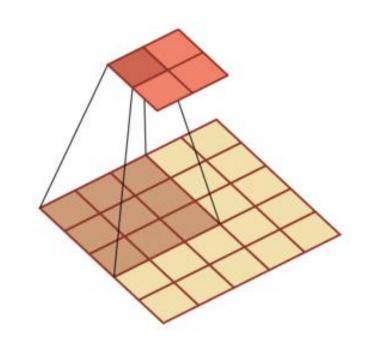
表示学习

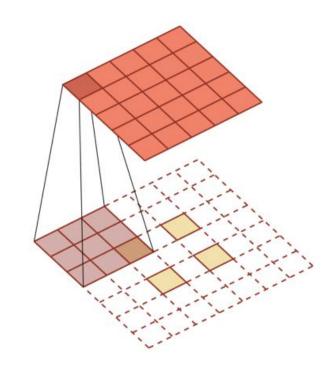


其它卷积种类

转置卷积/微步卷积

▶ 低维特征映射到高维特征



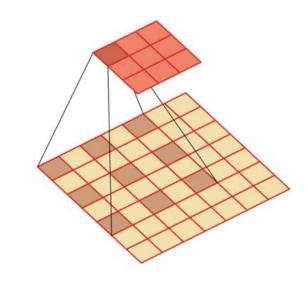


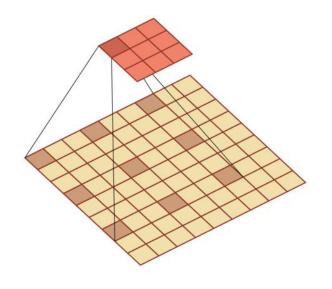
空洞卷积

- ▶如何增加输出单元的感受野
 - 增加卷积核的大小
 - 增加层数来实现
 - ▶ 在卷积之前进行汇聚操作

>空洞卷积

▶通过给卷积核插入"空洞"来变相地 增加其大小。

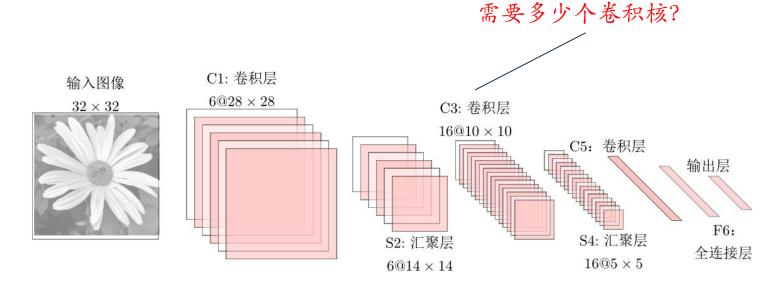




典型的卷积网络

LeNet-5

- ▶LeNet-5 是一个非常成功的神经网络模型。
 - ▶ 基于 LeNet-5 的手写数字识别系统在 90 年代被美国很多银行使用, 用来识别 支票上面的手写数字。
 - ▶ LeNet-5 共有 7 层。



Large Scale Visual Recognition Challenge

2012 Teams	%error	
Supervision (Toronto)	15.3	
ISI (Tokyo)	26.1	
VGG (Oxford)	26.9	
XRCE/INRIA	27.0	
UvA (Amsterdam)	29.6	
INRIA/LEAR	33.4	

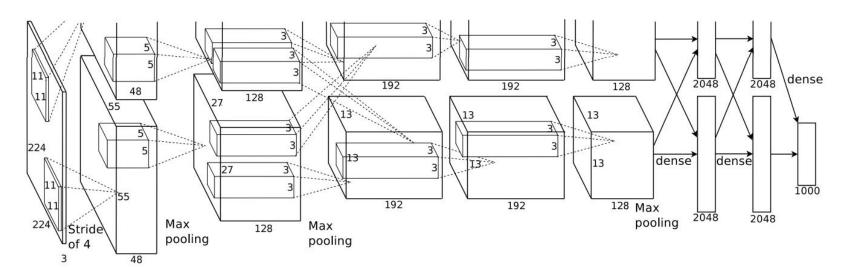
2013 Teams	%error
Clarifai (NYU spinoff)	11.7
NUS (singapore)	12.9
Zeiler-Fergus (NYU)	13.5
A. Howard	13.5
OverFeat (NYU)	14.1
UvA (Amsterdam)	14.2
Adobe	15.2
VGG (Oxford)	15.2
VGG (Oxford)	23.0

2014 Teams	%error
GoogLeNet	6.6
VGG (Oxford)	7.3
MSRA	8.0
A. Howard	8.1
DeeperVision	9.5
NUS-BST	9.7
TTIC-ECP	10.2
XYZ	11.2
UvA	12.1

AlexNet

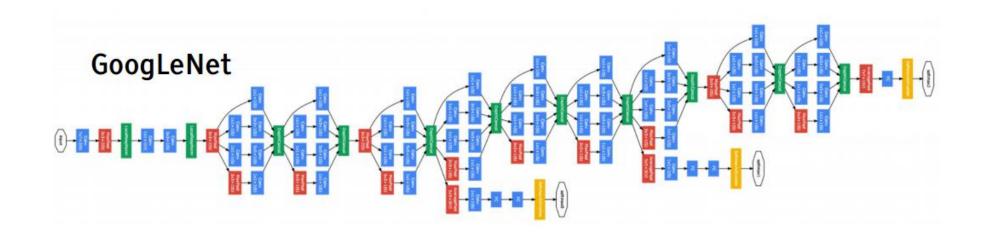
▶ 2012 ILSVRC winner

- top 5 error of 16% compared to runner-up with 26% error)
- ▶第一个现代深度卷积网络模型
 - ▶首次使用了很多现代深度卷积网络的一些技术方法
 - □使用GPU进行并行训练,采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强
- ▶5个卷积层、3个汇聚层和3个全连接层



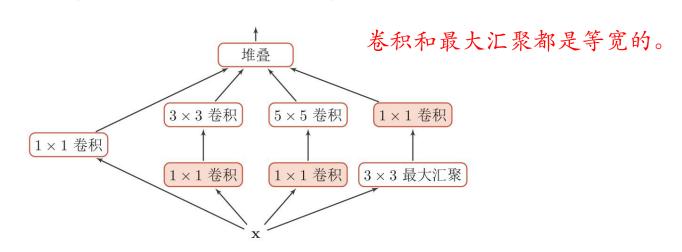
Inception网络

- ▶2014 ILSVRC winner (22层)
 - ▶ 参数: GoogLeNet: 4M VS AlexNet: 60M
 - ▶错误率: 6.7%
 - ▶ Inception网络是由有多个inception模块和少量的汇聚层堆叠而成。



Inception模块 v1

- ▶ 在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。
 - ▶ 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。
 - ▶ Inception模块同时使用1 × 1、3 × 3、5 × 5等不同大小的卷积核,并将得到的特征映射在深度上拼接(堆叠)起来作为输出特征映射。



Inception模块 v3

- 用多层的小卷积核来替换大的卷积核,以减少计算量和参数量。
 - ▶使用两层3x3的卷积来替换v1中的5x5的卷积
 - ▶使用连续的nx1和1xn来替换nxn的卷积。

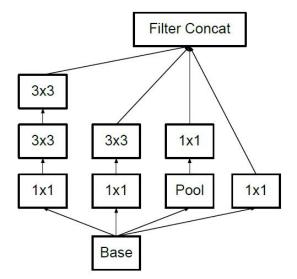


Figure 5. Inception modules where each 5×5 convolution is replaced by two 3×3 convolution, as suggested by principle 3 of Section 2.

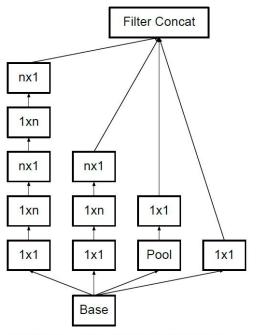


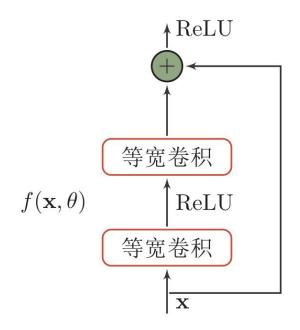
Figure 6. Inception modules after the factorization of the $n\times n$ convolutions. In our proposed architecture, we chose n=7 for the 17×17 grid. (The filter sizes are picked using principle 3)

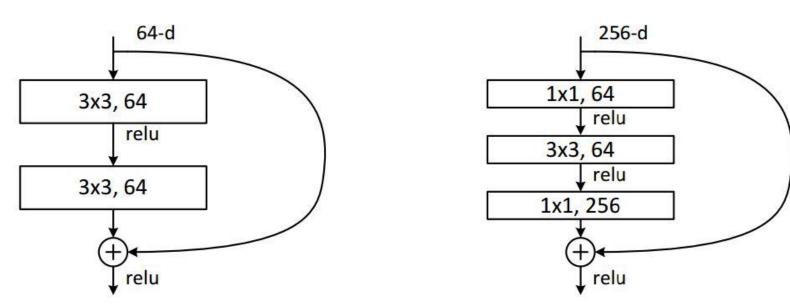
残差网络

- ▶ 残差网络 (Residual Network, ResNet) 是通过给非线性的卷积层增加直连边的方式来提高信息的传播效率。
- ▶假设在一个深度网络中,我们期望一个非线性单元(可以为一层或 多层的卷积层)f(x,θ)去逼近一个目标函数为h(x)。
- ▶将目标函数拆分成两部分: 恒等函数和残差函数

$$h(\mathbf{x}) = \underbrace{\mathbf{x}}_{ ext{恒等函数}} + \underbrace{\left(h(\mathbf{x}) - \mathbf{x}\right)}_{ ext{残差函数}}$$

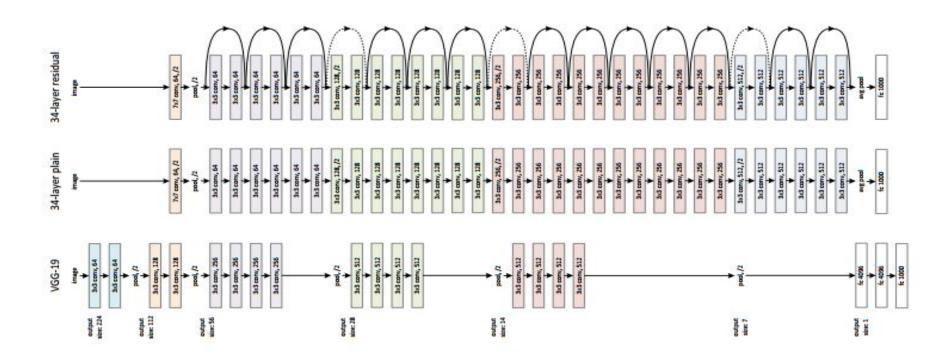
残差单元



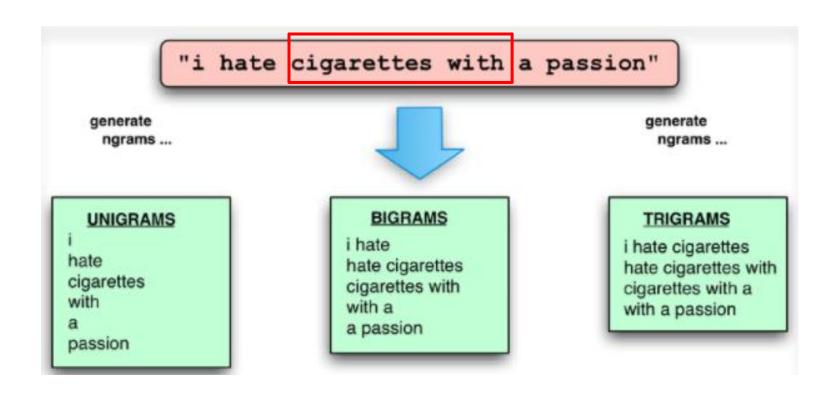


ResNet

- ▶2015 ILSVRC winner (152层)
 - ▶错误率: 3.57%

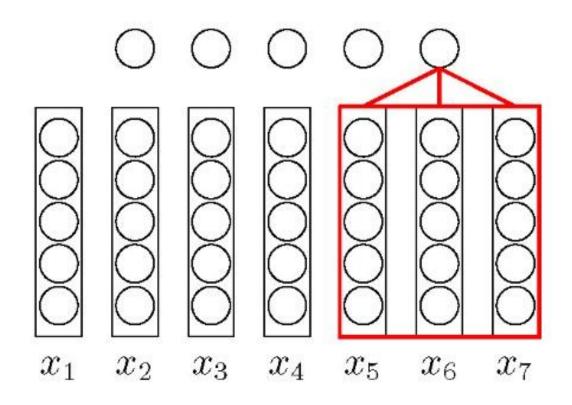


Ngram特征与卷积

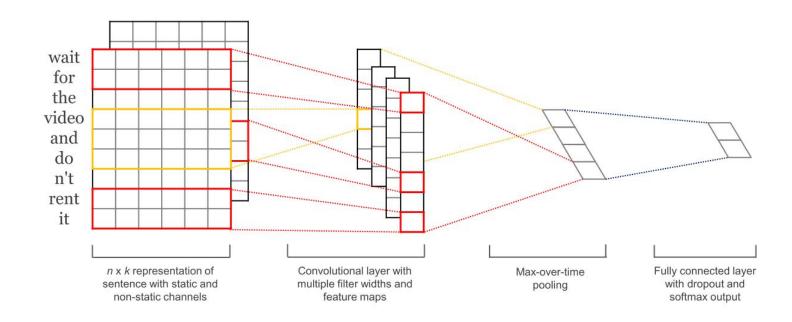


如何用卷积操作来实现?

文本序列的卷积

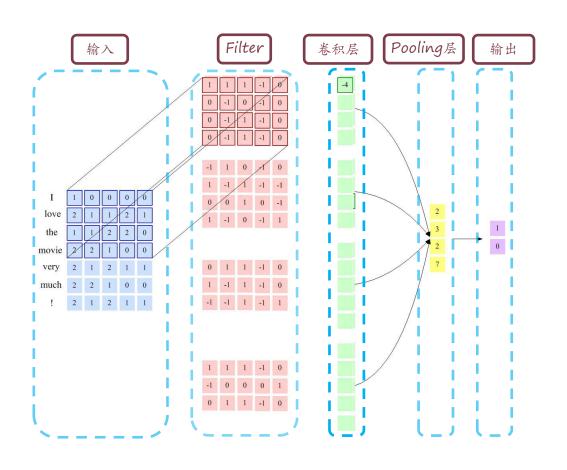


基于卷积模型的句子表示



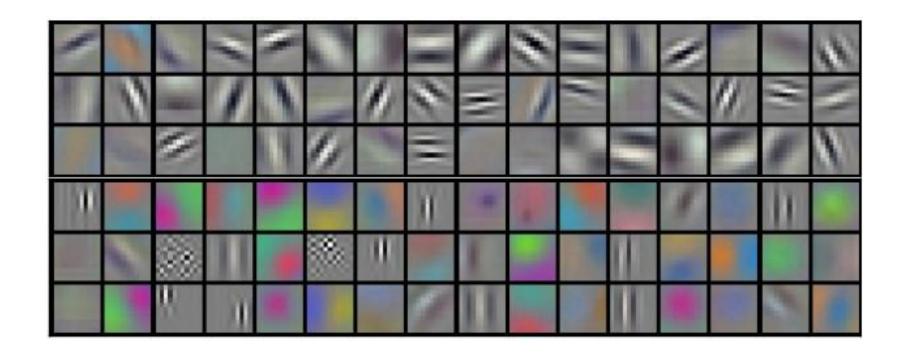
Y. Kim. "Convolutional neural networks for sentence classification" . In: *arXiv preprint arXiv:1408.5882* (2014).

文本序列的卷积模型



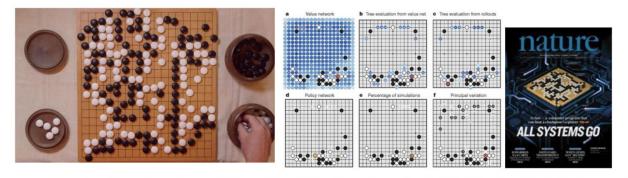
CNN 可视化:滤波器

▶AlexNet中的滤波器(96 filters [11x11x3])



卷积的应用

AlphaGo



The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters, stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad 1 => [19x19x192]

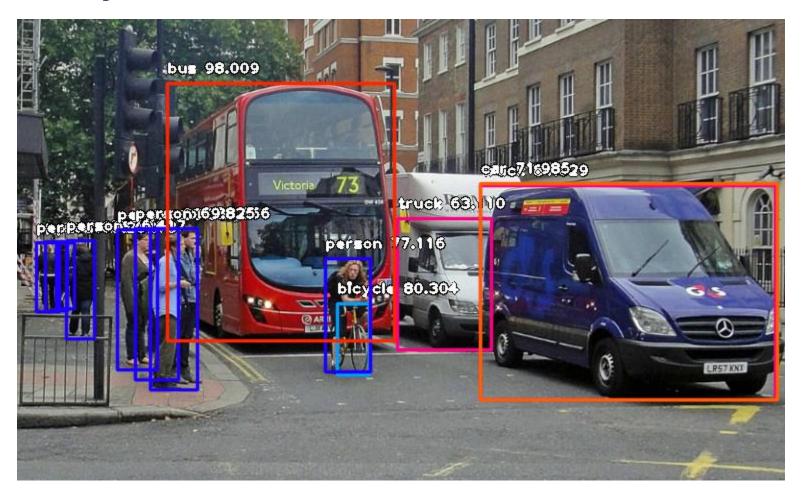
CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

▶ 分布式系统: 1202 个CPU 和176 块GPU

▶ 单机版: 48 个CPU 和8 块GPU

▶ 走子速度: 3毫秒-2微秒

目标检测 (Object Detection)

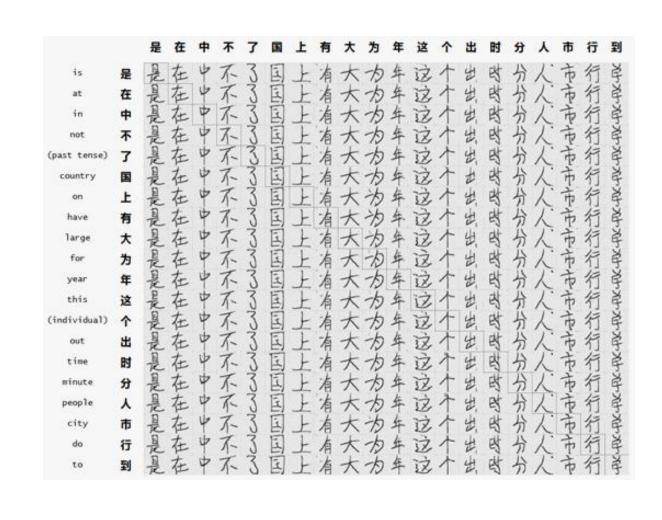


Mask RCNN

Figure 4. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

OCR

图像生成



Deep Dream

画风迁移

对抗样本

