# Python 工匠:容器的门道 ## 序言 > 这是 “Python 工匠”系列的第 4 篇文章。[[查看系列所有文章]](https://github.com/piglei/one-python-craftsman)
图片来源: "The Humble Mason Jar" by Chiot's Run - 非商业性使用 2.0 通用
“容器”这两个字很少被 Python 技术文章提起。一看到“容器”,大家想到的多是那头蓝色小鲸鱼:*Docker*,但这篇文章和它没有任何关系。本文里的容器,是 Python 中的一个抽象概念,是对**专门用来装其他对象的数据类型**的统称。 在 Python 中,有四类最常见的内建容器类型:`列表(list)`、`元组(tuple)`、`字典(dict)`、`集合(set)`。通过单独或是组合使用它们,可以高效地完成很多事情。 Python 语言自身的内部实现细节也与这些容器类型息息相关。比如 Python 的类实例属性、全局变量 `globals()` 等就都是通过字典类型来存储的。 在这篇文章里,我首先会从容器类型的定义出发,尝试总结出一些日常编码的最佳实践。之后再围绕各个容器类型提供的特殊机能,分享一些编程的小技巧。 ### 内容目录 - [Python 工匠:容器的门道](#python-工匠容器的门道) - [序言](#序言) - [内容目录](#内容目录) - [当我们谈论容器时,我们在谈些什么?](#当我们谈论容器时我们在谈些什么) - [底层看容器](#底层看容器) - [写更快的代码](#写更快的代码) - [1. 避免频繁扩充列表/创建新列表](#1-避免频繁扩充列表创建新列表) - [2. 在列表头部操作多的场景使用 deque 模块](#2-在列表头部操作多的场景使用-deque-模块) - [3. 使用集合/字典来判断成员是否存在](#3-使用集合字典来判断成员是否存在) - [高层看容器](#高层看容器) - [写扩展性更好的代码](#写扩展性更好的代码) - [面向容器接口编程](#面向容器接口编程) - [常用技巧](#常用技巧) - [1. 使用元组改善分支代码](#1-使用元组改善分支代码) - [2. 在更多地方使用动态解包](#2-在更多地方使用动态解包) - [3. 使用 next() 函数](#3-使用-next-函数) - [4. 使用有序字典来去重](#4-使用有序字典来去重) - [常见误区](#常见误区) - [1. 当心那些已经枯竭的迭代器](#1-当心那些已经枯竭的迭代器) - [2. 别在循环体内修改被迭代对象](#2-别在循环体内修改被迭代对象) - [总结](#总结) - [系列其他文章](#系列其他文章) - [注解](#注解) ### 当我们谈论容器时,我们在谈些什么? 我在前面给了“容器”一个简单的定义:*专门用来装其他对象的就是容器*。但这个定义太宽泛了,无法对我们的日常编程产生什么指导价值。要真正掌握 Python 里的容器,需要分别从两个层面入手: - **底层实现**:内置容器类型使用了什么数据结构?某项操作如何工作? - **高层抽象**:什么决定了某个对象是不是容器?哪些行为定义了容器? 下面,让我们一起站在这两个不同的层面上,重新认识容器。 ## 底层看容器 Python 是一门高级编程语言,**它所提供的内置容器类型,都是经过高度封装和抽象后的结果**。和“链表”、“红黑树”、“哈希表”这些名字相比,所有 Python 内建类型的名字,都只描述了这个类型的功能特点,其他人完全没法只通过这些名字了解它们的哪怕一丁点内部细节。 这是 Python 编程语言的优势之一。相比 C 语言这类更接近计算机底层的编程语言,Python 重新设计并实现了对编程者更友好的内置容器类型,屏蔽掉了内存管理等额外工作,为我们提供了更好的开发体验。 但如果这是 Python 语言的优势的话,为什么我们还要费劲去了解容器类型的实现细节呢?答案是:**关注细节可以帮助我们编写出更快的代码。** ### 写更快的代码 #### 1. 避免频繁扩充列表/创建新列表 所有的内建容器类型都不限制容量。如果你愿意,你可以把递增的数字不断塞进一个空列表,最终撑爆整台机器的内存。 在 Python 语言的实现细节里,列表的内存是按需分配的[[注1]](#annot1),当某个列表当前拥有的内存不够时,便会触发内存扩容逻辑。而分配内存是一项昂贵的操作。虽然大部分情况下,它不会对你的程序性能产生什么严重的影响。但是当你处理的数据量特别大时,很容易因为内存分配拖累整个程序的性能。 还好,Python 早就意识到了这个问题,并提供了官方的问题解决指引,那就是:**“变懒”**。 如何解释“变懒”?`range()` 函数的进化是一个非常好的例子。 在 Python 2 中,如果你调用 `range(100000000)`,需要等待好几秒才能拿到结果,因为它需要返回一个巨大的列表,花费了非常多的时间在内存分配与计算上。但在 Python 3 中,同样的调用马上就能拿到结果。因为函数返回的不再是列表,而是一个类型为 `range` 的懒惰对象,只有在你迭代它、或是对它进行切片时,它才会返回真正的数字给你。 **所以说,为了提高性能,内建函数 `range` “变懒”了。** 而为了避免过于频繁的内存分配,在日常编码中,我们的函数同样也需要变懒,这包括: - 更多的使用 `yield` 关键字,返回生成器对象 - 尽量使用生成器表达式替代列表推导表达式 - 生成器表达式:`(i for i in range(100))` 👍 - 列表推导表达式:`[i for i in range(100)]` - 尽量使用模块提供的懒惰对象: - 使用 `re.finditer` 替代 `re.findall` - 直接使用可迭代的文件对象: `for line in fp`,而不是 `for line in fp.readlines()` #### 2. 在列表头部操作多的场景使用 deque 模块 列表是基于数组结构(Array)实现的,当你在列表的头部插入新成员(`list.insert(0, item)`)时,它后面的所有其他成员都需要被移动,操作的时间复杂度是 `O(n)`。这导致在列表的头部插入成员远比在尾部追加(`list.append(item)` 时间复杂度为 `O(1)`)要慢。 如果你的代码需要执行很多次这类操作,请考虑使用 [collections.deque](https://docs.python.org/3.7/library/collections.html#collections.deque) 类型来替代列表。因为 deque 是基于双端队列实现的,无论是在头部还是尾部追加元素,时间复杂度都是 `O(1)`。 #### 3. 使用集合/字典来判断成员是否存在 当你需要判断成员是否存在于某个容器时,用集合比列表更合适。因为 `item in [...]` 操作的时间复杂度是 `O(n)`,而 `item in {...}` 的时间复杂度是 `O(1)`。这是因为字典与集合都是基于哈希表(Hash Table)数据结构实现的。 ```python # 这个例子不是特别恰当,因为当目标集合特别小时,使用集合还是列表对效率的影响微乎其微 # 但这不是重点 :) VALID_NAMES = ["piglei", "raymond", "bojack", "caroline"] # 转换为集合类型专门用于成员判断 VALID_NAMES_SET = set(VALID_NAMES) def validate_name(name): if name not in VALID_NAMES_SET: # 此处使用了 Python 3.6 添加的 f-strings 特性 raise ValueError(f"{name} is not a valid name!") ``` > Hint: 强烈建议阅读 [TimeComplexity - Python Wiki](https://wiki.python.org/moin/TimeComplexity),了解更多关于常见容器类型的时间复杂度相关内容。 > > 如果你对字典的实现细节感兴趣,也强烈建议观看 Raymond Hettinger 的演讲 [Modern Dictionaries(YouTube)](https://www.youtube.com/watch?v=p33CVV29OG8&t=1403s) ## 高层看容器 Python 是一门“[鸭子类型](https://en.wikipedia.org/wiki/Duck_typing)”语言:*“当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。”* 所以,当我们说某个对象是什么类型时,在根本上其实指的是: **这个对象满足了该类型的特定接口规范,可以被当成这个类型来使用。** 而对于所有内置容器类型来说,同样如此。 打开位于 [collections](https://docs.python.org/3.7/library/collections.html) 模块下的 [abc](https://docs.python.org/3/library/collections.abc.html)*(“抽象类 Abstract Base Classes”的首字母缩写)* 子模块,可以找到所有与容器相关的接口(抽象类)[[注2]](#annot2)定义。让我们分别看看那些内建容器类型都满足了什么接口: - **列表(list)**:满足 `Iterable`、`Sequence`、`MutableSequence` 等接口 - **元组(tuple)**:满足 `Iterable`、`Sequence` - **字典(dict)**:满足 `Iterable`、`Mapping`、`MutableMapping` [[注3]](#annot3) - **集合(set)**:满足 `Iterable`、`Set`、`MutableSet` [[注4]](#annot4) 每个内置容器类型,其实就是满足了多个接口定义的组合实体。比如所有的容器类型都满足 `“可被迭代的”(Iterable`) 这个接口,这意味着它们都是“可被迭代”的。但是反过来,不是所有“可被迭代”的对象都是容器。就像字符串虽然可以被迭代,但我们通常不会把它当做“容器”来看待。 了解这个事实后,我们将**在 Python 里重新认识**面向对象编程中最重要的原则之一:**面向接口而非具体实现来编程。** 让我们通过一个例子,看看如何理解 Python 里的“面向接口编程”。 ### 写扩展性更好的代码 某日,我们接到一个需求:*有一个列表,里面装着很多用户评论,为了在页面正常展示,需要将所有超过一定长度的评论用省略号替代*。 这个需求很好做,很快我们就写出了第一个版本的代码: ```python # 注:为了加强示例代码的说明性,本文中的部分代码片段使用了Python 3.5 # 版本添加的 Type Hinting 特性 def add_ellipsis(comments: typing.List[str], max_length: int = 12): """如果评论列表里的内容超过 max_length,剩下的字符用省略号代替 """ index = 0 for comment in comments: comment = comment.strip() if len(comment) > max_length: comments[index] = comment[:max_length] + '...' index += 1 return comments comments = [ "Implementation note", "Changed", "ABC for generator", ] print("\n".join(add_ellipsis(comments))) # OUTPUT: # Implementati... # Changed # ABC for gene... ``` 上面的代码里,`add_ellipsis` 函数接收一个列表作为参数,然后遍历它,替换掉需要修改的成员。这一切看上去很合理,因为我们接到的最原始需求就是:“有一个 **列表**,里面...”。**但如果有一天,我们拿到的评论不再是被继续装在列表里,而是在不可变的元组里呢?** 那样的话,现有的函数设计就会逼迫我们写出 `add_ellipsis(list(comments))` 这种即慢又难看的代码了。😨 #### 面向容器接口编程 我们需要改进函数来避免这个问题。因为 `add_ellipsis` 函数强依赖了列表类型,所以当参数类型变为元组时,现在的函数就不再适用了*(原因:给 `comments[index]` 赋值的地方会抛出 `TypeError` 异常)。* 如何改善这部分的设计?秘诀就是:**让函数依赖“可迭代对象”这个抽象概念,而非实体列表类型。** 使用生成器特性,函数可以被改成这样: ```python def add_ellipsis_gen(comments: typing.Iterable[str], max_length: int = 12): """如果可迭代评论里的内容超过 max_length,剩下的字符用省略号代替 """ for comment in comments: comment = comment.strip() if len(comment) > max_length: yield comment[:max_length] + '...' else: yield comment print("\n".join(add_ellipsis_gen(comments))) ``` 在新函数里,我们将依赖的参数类型从列表改成了可迭代的抽象类。这样做有很多好处,一个最明显的就是:无论评论是来自列表、元组或是某个文件,新函数都可以轻松满足: ```python # 处理放在元组里的评论 comments = ("Implementation note", "Changed", "ABC for generator") print("\n".join(add_ellipsis_gen(comments))) # 处理放在文件里的评论 with open("comments") as fp: for comment in add_ellipsis_gen(fp): print(comment) ``` 将依赖由某个具体的容器类型改为抽象接口后,函数的适用面变得更广了。除此之外,新函数在执行效率等方面也都更有优势。现在让我们再回到之前的问题。**从高层来看,什么定义了容器?** 答案是: **各个容器类型实现的接口协议定义了容器。** 不同的容器类型在我们的眼里,应该是 `是否可以迭代`、`是否可以修改`、`有没有长度` 等各种特性的组合。我们需要在编写相关代码时,**更多的关注容器的抽象属性,而非容器类型本身**,这样可以帮助我们写出更优雅、扩展性更好的代码。 > Hint:在 [itertools](https://docs.python.org/3/library/itertools.html) 与 [more-itertools](https://pypi.org/project/more-itertools/) 模块里可以找到更多关于处理可迭代对象的宝藏。 ## 常用技巧 ### 1. 使用元组改善分支代码 有时,我们的代码里会出现超过三个分支的 `if/else` 。就像下面这样: ```python import time def from_now(ts): """接收一个过去的时间戳,返回距离当前时间的相对时间文字描述 """ now = time.time() seconds_delta = int(now - ts) if seconds_delta < 1: return "less than 1 second ago" elif seconds_delta < 60: return "{} seconds ago".format(seconds_delta) elif seconds_delta < 3600: return "{} minutes ago".format(seconds_delta // 60) elif seconds_delta < 3600 * 24: return "{} hours ago".format(seconds_delta // 3600) else: return "{} days ago".format(seconds_delta // (3600 * 24)) now = time.time() print(from_now(now)) print(from_now(now - 24)) print(from_now(now - 600)) print(from_now(now - 7500)) print(from_now(now - 87500)) # OUTPUT: # less than 1 second ago # 24 seconds ago # 10 minutes ago # 2 hours ago # 1 days ago ``` 上面这个函数挑不出太多毛病,很多很多人都会写出类似的代码。但是,如果你仔细观察它,可以在分支代码部分找到一些明显的“**边界**”。 比如,当函数判断某个时间是否应该用“秒数”展示时,用到了 `60`。而判断是否应该用分钟时,用到了 `3600`。 **从边界提炼规律是优化这段代码的关键。** 如果我们将所有的这些边界放在一个有序元组中,然后配合二分查找模块 [bisect](https://docs.python.org/3.7/library/bisect.html)。整个函数的控制流就能被大大简化: ```python import bisect # BREAKPOINTS 必须是已经排好序的,不然无法进行二分查找 BREAKPOINTS = (1, 60, 3600, 3600 * 24) TMPLS = ( # unit, template (1, "less than 1 second ago"), (1, "{units} seconds ago"), (60, "{units} minutes ago"), (3600, "{units} hours ago"), (3600 * 24, "{units} days ago"), ) def from_now(ts): """接收一个过去的时间戳,返回距离当前时间的相对时间文字描述 """ seconds_delta = int(time.time() - ts) unit, tmpl = TMPLS[bisect.bisect(BREAKPOINTS, seconds_delta)] return tmpl.format(units=seconds_delta // unit) ``` 除了用元组可以优化过多的 `if/else` 分支外,有些情况下字典也能被用来做同样的事情。关键在于从现有代码找到重复的逻辑与规律,并多多尝试。 ### 2. 在更多地方使用动态解包 动态解包操作是指使用 `*` 或 `**` 运算符将可迭代对象“解开”的行为,在 Python 2 时代,这个操作只能被用在函数参数部分,并且对出现顺序和数量都有非常严格的要求,使用场景非常单一。 ```python def calc(a, b, multiplier=1): return (a + b) * multiplier # Python2 中只支持在函数参数部分进行动态解包 print calc(*[1, 2], **{"multiplier": 10}) # OUTPUT: 30 ``` 不过,Python 3 尤其是 3.5 版本后,`*` 和 `**` 的使用场景被大大扩充了。举个例子,在 Python 2 中,如果我们需要合并两个字典,需要这么做: ```python def merge_dict(d1, d2): # 因为字典是可被修改的对象,为了避免修改原对象,此处需要复制一个 d1 的浅拷贝 result = d1.copy() result.update(d2) return result user = merge_dict({"name": "piglei"}, {"movies": ["Fight Club"]}) ``` 但是在 Python 3.5 以后的版本,你可以直接用 `**` 运算符来快速完成字典的合并操作: ``` user = {**{"name": "piglei"}, **{"movies": ["Fight Club"]}} ``` 除此之外,你还可以在普通赋值语句中使用 `*` 运算符来动态地解包可迭代对象。如果你想详细了解相关内容,可以阅读下面推荐的 PEP。 > Hint:推进动态解包场景扩充的两个 PEP: > > - [PEP 3132 -- Extended Iterable Unpacking | Python.org](https://www.python.org/dev/peps/pep-3132/) > - [PEP 448 -- Additional Unpacking Generalizations | Python.org](https://www.python.org/dev/peps/pep-0448/) ### 3. 使用 next() 函数 `next()` 是一个非常实用的内建函数,它接收一个迭代器作为参数,然后返回该迭代器的下一个元素。使用它配合生成器表达式,可以高效的实现 *“从列表中查找第一个满足条件的成员”* 之类的需求。 ```python numbers = [3, 7, 8, 2, 21] # 获取并 **立即返回** 列表里的第一个偶数 print(next(i for i in numbers if i % 2 == 0)) # OUTPUT: 8 ``` ### 4. 使用有序字典来去重 字典和集合的结构特点保证了它们的成员不会重复,所以它们经常被用来去重。但是,使用它们俩去重后的结果会丢失原有列表的顺序。这是由底层数据结构“哈希表(Hash Table)”的特点决定的。 ```python >>> l = [10, 2, 3, 21, 10, 3] # 去重但是丢失了顺序 >>> set(l) {3, 10, 2, 21} ``` 如果既需要去重又必须保留顺序怎么办?我们可以使用 `collections.OrderedDict` 模块: ```python >>> from collections import OrderedDict >>> list(OrderedDict.fromkeys(l).keys()) [10, 2, 3, 21] ``` > Hint: 在 Python 3.6 中,默认的字典类型修改了实现方式,已经变成有序的了。并且在 Python 3.7 中,该功能已经从 **语言的实现细节** 变成了为 **可依赖的正式语言特性**。 > > 但是我觉得让整个 Python 社区习惯这一点还需要一些时间,毕竟目前“字典是无序的”还是被印在无数本 Python 书上。所以,我仍然建议在一切需要有序字典的地方使用 OrderedDict。 ## 常见误区 ### 1. 当心那些已经枯竭的迭代器 在文章前面,我们提到了使用“懒惰”生成器的种种好处。但是,所有事物都有它的两面性。生成器的最大的缺点之一就是:**它会枯竭**。当你完整遍历过它们后,之后的重复遍历就不能拿到任何新内容了。 ```python numbers = [1, 2, 3] numbers = (i * 2 for i in numbers) # 第一次循环会输出 2, 4, 6 for number in numbers: print(number) # 这次循环什么都不会输出,因为迭代器已经枯竭了 for number in numbers: print(number) ``` 而且不光是生成器表达式,Python 3 里的 map、filter 内建函数也都有一样的特点。忽视这个特点很容易导致代码中出现一些难以察觉的 Bug。 Instagram 就在项目从 Python 2 到 Python 3 的迁移过程中碰到了这个问题。它们在 PyCon 2017 上分享了对付这个问题的故事。访问文章 [Instagram 在 PyCon 2017 的演讲摘要](https://www.piglei.com/articles/instagram-pycon-2017/),搜索“迭代器”可以查看详细内容。 ### 2. 别在循环体内修改被迭代对象 这是一个很多 Python 初学者会犯的错误。比如,我们需要一个函数来删掉列表里的所有偶数: ```python def remove_even(numbers): """去掉列表里所有的偶数 """ for i, number in enumerate(numbers): if number % 2 == 0: # 有问题的代码 del numbers[i] numbers = [1, 2, 7, 4, 8, 11] remove_even(numbers) print(numbers) # OUTPUT: [1, 7, 8, 11] ``` 注意到结果里那个多出来的 “8” 了吗?当你在遍历一个列表的同时修改它,就会出现这样的事情。因为被迭代的对象 `numbers` 在循环过程中被修改了。**遍历的下标在不断增长,而列表本身的长度同时又在不断缩减。这样就会导致列表里的一些成员其实根本就没有被遍历到。** 所以对于这类操作,请使用一个新的空列表保存结果,或者利用 `yield` 返回一个生成器。而不是修改被迭代的列表或是字典对象本身。 ## 总结 在这篇文章中,我们首先从“容器类型”的定义出发,在底层和高层两个层面探讨了容器类型。之后遵循系列文章传统,提供了一些编写容器相关代码时的技巧。 让我们最后再总结一下要点: - 了解容器类型的底层实现,可以帮助你写出性能更好的代码 - 提炼需求里的抽象概念,面向接口而非实现编程 - 多使用“懒惰”的对象,少生成“迫切”的列表 - 使用元组和字典可以简化分支代码结构 - 使用 `next()` 函数配合迭代器可以高效完成很多事情,但是也需要注意“枯竭”问题 - collections、itertools 模块里有非常多有用的工具,快去看看吧! 看完文章的你,有没有什么想吐槽的?请留言或者在 [项目 Github Issues](https://github.com/piglei/one-python-craftsman) 告诉我吧。 [>>>下一篇【5.让函数返回结果的技巧】](5-function-returning-tips.md) [<<<上一篇【3.使用数字与字符串的技巧】](3-tips-on-numbers-and-strings.md) ## 系列其他文章 - [所有文章索引 [Github]](https://github.com/piglei/one-python-craftsman) - [Python 工匠:善用变量改善代码质量](https://www.piglei.com/articles/python-using-variables-well/) - [Python 工匠:编写条件分支代码的技巧](https://www.piglei.com/articles/python-else-block-secrets/) - [Python 工匠:使用数字与字符串的技巧](https://www.piglei.com/articles/tips-on-numbers-and-strings/) ## 注解 1. Python 这门语言除了 CPython 外,还有许许多多的其他版本实现。如无特别说明,本文以及 “Python 工匠” 系列里出现的所有 Python 都特指 Python 的 C 语言实现 CPython 2. Python 里没有类似其他编程语言里的“Interface 接口”类型,只有类似的“抽象类”概念。为了表达方便,后面的内容均统一使用“接口”来替代“抽象类”。 3. 有没有只实现了 Mapping 但又不是 MutableMapping 的类型?试试 [MappingProxyType({})](https://docs.python.org/3/library/types.html#types.MappingProxyType) 4. 有没有只实现了 Set 但又不是 MutableSet 的类型?试试 [frozenset()](https://docs.python.org/3/library/stdtypes.html#frozenset)