Arduino-IRremote/examples/AllProtocolsOnLCD/ADCUtils.h

228 lines
10 KiB
C

/*
* ADCUtils.h
*
* Copyright (C) 2016-2022 Armin Joachimsmeyer
* Email: armin.joachimsmeyer@gmail.com
*
* This file is part of Arduino-Utils https://github.com/ArminJo/Arduino-Utils.
*
* ArduinoUtils is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/gpl.html>.
*
*/
#ifndef _ADC_UTILS_H
#define _ADC_UTILS_H
#include <Arduino.h>
#if defined(__AVR__) && defined(ADCSRA) && defined(ADATE) && (!defined(__AVR_ATmega4809__))
#define ADC_UTILS_ARE_AVAILABLE
// PRESCALE4 => 13 * 4 = 52 microseconds per ADC conversion at 1 MHz Clock => 19,2 kHz
#define ADC_PRESCALE2 1 // 26 microseconds per ADC conversion at 1 MHz
#define ADC_PRESCALE4 2 // 52 microseconds per ADC conversion at 1 MHz
// PRESCALE8 => 13 * 8 = 104 microseconds per ADC sample at 1 MHz Clock => 9,6 kHz
#define ADC_PRESCALE8 3 // 104 microseconds per ADC conversion at 1 MHz
#define ADC_PRESCALE16 4 // 13/208 microseconds per ADC conversion at 16/1 MHz - degradations in linearity at 16 MHz
#define ADC_PRESCALE32 5 // 26/416 microseconds per ADC conversion at 16/1 MHz - very good linearity at 16 MHz
#define ADC_PRESCALE64 6 // 52 microseconds per ADC conversion at 16 MHz
#define ADC_PRESCALE128 7 // 104 microseconds per ADC conversion at 16 MHz --- Arduino default
// definitions for 0.1 ms conversion time
#if (F_CPU == 1000000)
#define ADC_PRESCALE ADC_PRESCALE8
#elif (F_CPU == 8000000)
#define ADC_PRESCALE ADC_PRESCALE64
#elif (F_CPU == 16000000)
#define ADC_PRESCALE ADC_PRESCALE128
#endif
/*
* Reference shift values are complicated for ATtinyX5 since we have the extra register bit REFS2
* in ATTinyCore, this bit is handled programmatical and therefore the defines are different.
* To keep my library small, I use the changed defines.
* After including this file you can not call the ATTinyCore readAnalog functions reliable, if you specify references other than default!
*/
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
// defines are for ADCUtils.cpp, they can be used WITHOUT bit reordering
#undef DEFAULT
#undef EXTERNAL
#undef INTERNAL1V1
#undef INTERNAL
#undef INTERNAL2V56
#undef INTERNAL2V56_EXTCAP
#define DEFAULT 0
#define EXTERNAL 4
#define INTERNAL1V1 8
#define INTERNAL INTERNAL1V1
#define INTERNAL2V56 9
#define INTERNAL2V56_EXTCAP 13
#define SHIFT_VALUE_FOR_REFERENCE REFS2
#define MASK_FOR_ADC_REFERENCE (_BV(REFS0) | _BV(REFS1) | _BV(REFS2))
#define MASK_FOR_ADC_CHANNELS (_BV(MUX0) | _BV(MUX1) | _BV(MUX2) | _BV(MUX3))
#else // AVR_ATtiny85
#define SHIFT_VALUE_FOR_REFERENCE REFS0
#define MASK_FOR_ADC_REFERENCE (_BV(REFS0) | _BV(REFS1))
#define MASK_FOR_ADC_CHANNELS (_BV(MUX0) | _BV(MUX1) | _BV(MUX2) | _BV(MUX3))
#endif
// Temperature channel definitions - 1 LSB / 1 degree Celsius
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
#define ADC_TEMPERATURE_CHANNEL_MUX 15
#define ADC_1_1_VOLT_CHANNEL_MUX 12
#define ADC_GND_CHANNEL_MUX 13
#define ADC_CHANNEL_MUX_MASK 0x0F
#elif defined(__AVR_ATtiny87__) || defined(__AVR_ATtiny167__)
#define ADC_ISCR_CHANNEL_MUX 3
#define ADC_TEMPERATURE_CHANNEL_MUX 11
#define ADC_1_1_VOLT_CHANNEL_MUX 12
#define ADC_GND_CHANNEL_MUX 14
#define ADC_VCC_4TH_CHANNEL_MUX 13
#define ADC_CHANNEL_MUX_MASK 0x1F
#elif defined(__AVR_ATmega328P__)
#define ADC_TEMPERATURE_CHANNEL_MUX 8
#define ADC_1_1_VOLT_CHANNEL_MUX 14
#define ADC_GND_CHANNEL_MUX 15
#define ADC_CHANNEL_MUX_MASK 0x0F
#elif defined(__AVR_ATmega32U4__)
#define ADC_TEMPERATURE_CHANNEL_MUX 0x27
#define ADC_1_1_VOLT_CHANNEL_MUX 0x1E
#define ADC_GND_CHANNEL_MUX 0x1F
#define ADC_CHANNEL_MUX_MASK 0x3F
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define ADC_1_1_VOLT_CHANNEL_MUX 0x1E
#define ADC_GND_CHANNEL_MUX 0x1F
#define ADC_CHANNEL_MUX_MASK 0x1F
#define INTERNAL INTERNAL1V1
#else
#error "No temperature channel definitions specified for this AVR CPU"
#endif
/*
* Thresholds for OVER and UNDER voltage and detection of kind of power supply (USB or Li-ion)
*
* Default values are suitable for Li-ion batteries.
* We normally have voltage drop at the connectors, so the battery voltage is assumed slightly higher, than the Arduino VCC.
* But keep in mind that the ultrasonic distance module HC-SR04 may not work reliable below 3.7 volt.
*/
#if !defined(LI_ION_VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT)
#define LI_ION_VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT 3400 // Do not stress your battery and we require some power for standby
#endif
#if !defined(LI_ION_VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT)
#define LI_ION_VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT 3000 // Many Li-ions are specified down to 3.0 volt
#endif
#if !defined(VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT)
#define VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT LI_ION_VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT
#endif
#if !defined(VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT)
#define VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT LI_ION_VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT
#endif
#if !defined(VCC_OVERVOLTAGE_THRESHOLD_MILLIVOLT)
#define VCC_OVERVOLTAGE_THRESHOLD_MILLIVOLT 5250 // + 5 % operation voltage
#endif
#if !defined(VCC_EMERGENCY_OVERVOLTAGE_THRESHOLD_MILLIVOLT)
#define VCC_EMERGENCY_OVERVOLTAGE_THRESHOLD_MILLIVOLT 5500 // +10 %. Max recommended operation voltage
#endif
#if !defined(VCC_CHECK_PERIOD_MILLIS)
#define VCC_CHECK_PERIOD_MILLIS 10000L // 10 seconds period of VCC checks
#endif
#if !defined(VCC_UNDERVOLTAGE_CHECKS_BEFORE_STOP)
#define VCC_UNDERVOLTAGE_CHECKS_BEFORE_STOP 6 // Shutdown after 6 times (60 seconds) VCC below VCC_UNDERVOLTAGE_THRESHOLD_MILLIVOLT or 1 time below VCC_EMERGENCY_UNDERVOLTAGE_THRESHOLD_MILLIVOLT
#endif
#if !defined(VOLTAGE_USB_POWERED_LOWER_THRESHOLD_MILLIVOLT)
#define VOLTAGE_USB_POWERED_LOWER_THRESHOLD_MILLIVOLT 4300 // Assume USB powered above this voltage
#endif
#if !defined(VOLTAGE_USB_POWERED_UPPER_THRESHOLD_MILLIVOLT)
#define VOLTAGE_USB_POWERED_UPPER_THRESHOLD_MILLIVOLT 4950 // Assume USB powered below this voltage, because of the loss in USB cable. If we have > 4950, we assume to be powered by VIN.
// In contrast to e.g. powered by VIN, which results in almost perfect 5 volt supply
#endif
extern long sLastVCCCheckMillis;
extern uint8_t sVCCTooLowCounter;
uint16_t readADCChannel(uint8_t aADCChannelNumber);
uint16_t readADCChannelWithReference(uint8_t aADCChannelNumber, uint8_t aReference);
uint16_t waitAndReadADCChannelWithReference(uint8_t aADCChannelNumber, uint8_t aReference);
uint16_t waitAndReadADCChannelWithReferenceAndRestoreADMUXAndReference(uint8_t aADCChannelNumber, uint8_t aReference);
uint16_t readADCChannelWithOversample(uint8_t aADCChannelNumber, uint8_t aOversampleExponent);
void setADCChannelAndReferenceForNextConversion(uint8_t aADCChannelNumber, uint8_t aReference);
uint16_t readADCChannelWithReferenceOversampleFast(uint8_t aADCChannelNumber, uint8_t aReference, uint8_t aOversampleExponent);
uint32_t readADCChannelMultiSamples(uint8_t aPrescale, uint16_t aNumberOfSamples);
uint16_t readADCChannelMultiSamplesWithReference(uint8_t aADCChannelNumber, uint8_t aReference, uint8_t aNumberOfSamples);
uint32_t readADCChannelMultiSamplesWithReferenceAndPrescaler(uint8_t aADCChannelNumber, uint8_t aReference, uint8_t aPrescale,
uint16_t aNumberOfSamples);
uint16_t readADCChannelWithReferenceMax(uint8_t aADCChannelNumber, uint8_t aReference, uint16_t aNumberOfSamples);
uint16_t readADCChannelWithReferenceMaxMicros(uint8_t aADCChannelNumber, uint8_t aReference, uint16_t aMicrosecondsToAquire);
uint16_t readUntil4ConsecutiveValuesAreEqual(uint8_t aADCChannelNumber, uint8_t aReference, uint8_t aDelay,
uint8_t aAllowedDifference, uint8_t aMaxRetries);
uint8_t checkAndWaitForReferenceAndChannelToSwitch(uint8_t aADCChannelNumber, uint8_t aReference);
/*
* readVCC*() functions store the result in sVCCVoltageMillivolt or sVCCVoltage
*/
float getVCCVoltageSimple(void);
void readVCCVoltageSimple(void);
void readVCCVoltageMillivoltSimple(void);
void readVCCVoltage(void);
uint16_t getVCCVoltageMillivolt(void);
void readVCCVoltageMillivolt(void);
uint16_t getVCCVoltageReadingFor1_1VoltReference(void);
uint16_t printVCCVoltageMillivolt(Print *aSerial);
void readAndPrintVCCVoltageMillivolt(Print *aSerial);
uint16_t getVoltageMillivolt(uint16_t aVCCVoltageMillivolt, uint8_t aADCChannelForVoltageMeasurement);
uint16_t getVoltageMillivolt(uint8_t aADCChannelForVoltageMeasurement);
uint16_t getVoltageMillivoltWith_1_1VoltReference(uint8_t aADCChannelForVoltageMeasurement);
float getCPUTemperatureSimple(void);
float getCPUTemperature(void);
float getTemperature(void) __attribute__ ((deprecated ("Renamed to getCPUTemperature()"))); // deprecated
bool isVCCUSBPowered();
bool isVCCUSBPowered(Print *aSerial);
bool isVCCUndervoltageMultipleTimes();
void resetCounterForVCCUndervoltageMultipleTimes();
bool isVCCUndervoltage();
bool isVCCEmergencyUndervoltage();
bool isVCCOvervoltage();
bool isVCCOvervoltageSimple();
#endif // defined(__AVR__) ...
/*
* Variables and functions defined as dummies to allow for seamless compiling on non AVR platforms
*/
extern float sVCCVoltage;
extern uint16_t sVCCVoltageMillivolt;
uint16_t readADCChannelWithReferenceOversample(uint8_t aADCChannelNumber, uint8_t aReference, uint8_t aOversampleExponent);
uint16_t getVCCVoltageMillivoltSimple(void);
float getVCCVoltage(void);
float getCPUTemperature(void);
#endif // _ADC_UTILS_H