Arduino-IRremote/examples/ReceiveAndSend/ReceiveAndSend.ino

247 lines
10 KiB
C++

/*
* ReceiveAndSend.cpp
*
* Record and play back last received IR signal at button press.
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
* If the protocol is unknown or not enabled, store it as raw data for later sending.
*
* An example for simultaneous receiving and sending is in the UnitTest example.
*
* An IR detector/demodulator must be connected to the input IR_RECEIVE_PIN.
*
* A button must be connected between the input SEND_BUTTON_PIN and ground.
* A visible LED can be connected to STATUS_PIN to provide status.
*
*
* Initially coded 2009 Ken Shirriff http://www.righto.com
*
* This file is part of Arduino-IRremote https://github.com/Arduino-IRremote/Arduino-IRremote.
*
************************************************************************************
* MIT License
*
* Copyright (c) 2009-2024 Ken Shirriff, Armin Joachimsmeyer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
* OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
************************************************************************************
*/
#include <Arduino.h>
#include "PinDefinitionsAndMore.h" // Define macros for input and output pin etc.
/*
* Specify which protocol(s) should be used for decoding.
* If no protocol is defined, all protocols (except Bang&Olufsen) are active.
* This must be done before the #include <IRremote.hpp>
*/
//#define DECODE_DENON // Includes Sharp
//#define DECODE_JVC
//#define DECODE_KASEIKYO
//#define DECODE_PANASONIC // alias for DECODE_KASEIKYO
//#define DECODE_LG
#define DECODE_NEC // Includes Apple and Onkyo
//#define DECODE_SAMSUNG
//#define DECODE_SONY
//#define DECODE_RC5
//#define DECODE_RC6
//#define DECODE_BOSEWAVE
//#define DECODE_LEGO_PF
//#define DECODE_MAGIQUEST
//#define DECODE_WHYNTER
//#define DECODE_FAST
//
#if !defined(RAW_BUFFER_LENGTH)
// For air condition remotes it requires 600 (maximum for 2k RAM) to 750. Default is 112 if DECODE_MAGIQUEST is enabled, otherwise 100.
# if (defined(RAMEND) && RAMEND <= 0x4FF) || (defined(RAMSIZE) && RAMSIZE < 0x4FF)
#define RAW_BUFFER_LENGTH 120 // 180 is too much here, because we have additional uint8_t rawCode[RAW_BUFFER_LENGTH];
# elif (defined(RAMEND) && RAMEND <= 0x8FF) || (defined(RAMSIZE) && RAMSIZE < 0x8FF)
#define RAW_BUFFER_LENGTH 400 // 600 is too much here, because we have additional uint8_t rawCode[RAW_BUFFER_LENGTH];
# elif (defined(RAMEND) && RAMEND <= 0xAFF) || (defined(RAMSIZE) && RAMSIZE < 0xAFF)
#define RAW_BUFFER_LENGTH 500 // 750 is too much here, because we have additional uint8_t rawCode[RAW_BUFFER_LENGTH];
# else
#define RAW_BUFFER_LENGTH 750
# endif
#endif
//#define EXCLUDE_UNIVERSAL_PROTOCOLS // Saves up to 1000 bytes program memory.
//#define EXCLUDE_EXOTIC_PROTOCOLS // saves around 650 bytes program memory if all other protocols are active
//#define NO_LED_FEEDBACK_CODE // saves 92 bytes program memory
//#define RECORD_GAP_MICROS 12000 // Default is 8000. Activate it for some LG air conditioner protocols
//#define SEND_PWM_BY_TIMER // Disable carrier PWM generation in software and use (restricted) hardware PWM.
//#define USE_NO_SEND_PWM // Use no carrier PWM, just simulate an active low receiver signal. Overrides SEND_PWM_BY_TIMER definition
// MARK_EXCESS_MICROS is subtracted from all marks and added to all spaces before decoding,
// to compensate for the signal forming of different IR receiver modules. See also IRremote.hpp line 142.
#define MARK_EXCESS_MICROS 20 // Adapt it to your IR receiver module. 20 is recommended for the cheap VS1838 modules.
//#define DEBUG // Activate this for lots of lovely debug output from the decoders.
#include <IRremote.hpp>
int SEND_BUTTON_PIN = APPLICATION_PIN;
int DELAY_BETWEEN_REPEAT = 50;
// Storage for the recorded code
struct storedIRDataStruct {
IRData receivedIRData;
// extensions for sendRaw
uint8_t rawCode[RAW_BUFFER_LENGTH]; // The durations if raw
uint8_t rawCodeLength; // The length of the code
} sStoredIRData;
bool sSendButtonWasActive;
void storeCode();
void sendCode(storedIRDataStruct *aIRDataToSend);
void setup() {
pinMode(SEND_BUTTON_PIN, INPUT_PULLUP);
Serial.begin(115200);
#if defined(__AVR_ATmega32U4__) || defined(SERIAL_PORT_USBVIRTUAL) || defined(SERIAL_USB) /*stm32duino*/|| defined(USBCON) /*STM32_stm32*/|| defined(SERIALUSB_PID) || defined(ARDUINO_attiny3217)
delay(4000); // To be able to connect Serial monitor after reset or power up and before first print out. Do not wait for an attached Serial Monitor!
#endif
// Just to know which program is running on my Arduino
Serial.println(F("START " __FILE__ " from " __DATE__ "\r\nUsing library version " VERSION_IRREMOTE));
// Start the receiver and if not 3. parameter specified, take LED_BUILTIN pin from the internal boards definition as default feedback LED
IrReceiver.begin(IR_RECEIVE_PIN, ENABLE_LED_FEEDBACK);
Serial.print(F("Ready to receive IR signals of protocols: "));
printActiveIRProtocols(&Serial);
Serial.println(F("at pin " STR(IR_RECEIVE_PIN)));
IrSender.begin(); // Start with IR_SEND_PIN -which is defined in PinDefinitionsAndMore.h- as send pin and enable feedback LED at default feedback LED pin
Serial.print(F("Ready to send IR signals at pin " STR(IR_SEND_PIN) " on press of button at pin "));
Serial.println(SEND_BUTTON_PIN);
}
void loop() {
// If button pressed, send the code.
bool tSendButtonIsActive = (digitalRead(SEND_BUTTON_PIN) == LOW); // Button pin is active LOW
/*
* Check for current button state
*/
if (tSendButtonIsActive) {
if (!sSendButtonWasActive) {
Serial.println(F("Stop receiving"));
IrReceiver.stop();
}
/*
* Button pressed -> send stored data
*/
Serial.print(F("Button pressed, now sending "));
if (sSendButtonWasActive == tSendButtonIsActive) {
Serial.print(F("repeat "));
sStoredIRData.receivedIRData.flags = IRDATA_FLAGS_IS_REPEAT;
} else {
sStoredIRData.receivedIRData.flags = IRDATA_FLAGS_EMPTY;
}
Serial.flush(); // To avoid disturbing the software PWM generation by serial output interrupts
sendCode(&sStoredIRData);
delay(DELAY_BETWEEN_REPEAT); // Wait a bit between retransmissions
} else if (sSendButtonWasActive) {
/*
* Button is just released -> activate receiving
*/
// Restart receiver
Serial.println(F("Button released -> start receiving"));
IrReceiver.start();
} else if (IrReceiver.decode()) {
/*
* Button is not pressed and data available -> store received data and resume
*/
storeCode();
IrReceiver.resume(); // resume receiver
}
sSendButtonWasActive = tSendButtonIsActive;
delay(100);
}
// Stores the code for later playback in sStoredIRData
// Most of this code is just logging
void storeCode() {
if (IrReceiver.decodedIRData.rawDataPtr->rawlen < 4) {
Serial.print(F("Ignore data with rawlen="));
Serial.println(IrReceiver.decodedIRData.rawDataPtr->rawlen);
return;
}
if (IrReceiver.decodedIRData.flags & IRDATA_FLAGS_IS_REPEAT) {
Serial.println(F("Ignore repeat"));
return;
}
if (IrReceiver.decodedIRData.flags & IRDATA_FLAGS_IS_AUTO_REPEAT) {
Serial.println(F("Ignore autorepeat"));
return;
}
if (IrReceiver.decodedIRData.flags & IRDATA_FLAGS_PARITY_FAILED) {
Serial.println(F("Ignore parity error"));
return;
}
/*
* Copy decoded data
*/
sStoredIRData.receivedIRData = IrReceiver.decodedIRData;
if (sStoredIRData.receivedIRData.protocol == UNKNOWN) {
Serial.print(F("Received unknown code and store "));
Serial.print(IrReceiver.decodedIRData.rawDataPtr->rawlen - 1);
Serial.println(F(" timing entries as raw "));
IrReceiver.printIRResultRawFormatted(&Serial, true); // Output the results in RAW format
sStoredIRData.rawCodeLength = IrReceiver.decodedIRData.rawDataPtr->rawlen - 1;
/*
* Store the current raw data in a dedicated array for later usage
*/
IrReceiver.compensateAndStoreIRResultInArray(sStoredIRData.rawCode);
} else {
IrReceiver.printIRResultShort(&Serial);
IrReceiver.printIRSendUsage(&Serial);
sStoredIRData.receivedIRData.flags = 0; // clear flags -esp. repeat- for later sending
Serial.println();
}
}
void sendCode(storedIRDataStruct *aIRDataToSend) {
if (aIRDataToSend->receivedIRData.protocol == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
IrSender.sendRaw(aIRDataToSend->rawCode, aIRDataToSend->rawCodeLength, 38);
Serial.print(F("raw "));
Serial.print(aIRDataToSend->rawCodeLength);
Serial.println(F(" marks or spaces"));
} else {
/*
* Use the write function, which does the switch for different protocols
*/
IrSender.write(&aIRDataToSend->receivedIRData);
printIRResultShort(&Serial, &aIRDataToSend->receivedIRData, false);
}
}