
Math. Program., Ser. B (2011) 127:3–30
DOI 10.1007/s10107-010-0420-4

FULL LENGTH PAPER

Pegasos: primal estimated sub-gradient solver
for SVM

Shai Shalev-Shwartz · Yoram Singer ·
Nathan Srebro · Andrew Cotter

Received: 30 August 2009 / Accepted: 17 November 2009 / Published online: 16 October 2010
© Springer and Mathematical Optimization Society 2010

Abstract We describe and analyze a simple and effective stochastic sub-gradient
descent algorithm for solving the optimization problem cast by Support Vector
Machines (SVM). We prove that the number of iterations required to obtain a solution
of accuracy ε is Õ(1/ε), where each iteration operates on a single training exam-
ple. In contrast, previous analyses of stochastic gradient descent methods for SVMs
require Ω(1/ε2) iterations. As in previously devised SVM solvers, the number of
iterations also scales linearly with 1/λ, where λ is the regularization parameter of
SVM. For a linear kernel, the total run-time of our method is Õ(d/(λε)), where d is
a bound on the number of non-zero features in each example. Since the run-time does
not depend directly on the size of the training set, the resulting algorithm is especially
suited for learning from large datasets. Our approach also extends to non-linear kernels
while working solely on the primal objective function, though in this case the runtime
does depend linearly on the training set size. Our algorithm is particularly well suited
for large text classification problems, where we demonstrate an order-of-magnitude
speedup over previous SVM learning methods.
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1 Introduction

Support Vector Machines (SVMs) are effective and popular classification learning
tool [36,12]. The task of learning a support vector machine is typically cast as a con-
strained quadratic programming problem. However, in its native form, it is in fact an
unconstrained empirical loss minimization with a penalty term for the norm of the
classifier that is being learned. Formally, given a training set S = {(xi , yi )}mi=1, where
xi ∈ R

n and yi ∈ {+1,−1}, we would like to find the minimizer of the problem

min
w

λ

2
‖w‖2 + 1

m

∑

(x,y)∈S

�(w; (x, y)), (1)

where

�(w; (x, y)) = max{0, 1− y 〈w, x〉}, (2)

and 〈u, v〉 denotes the standard inner product between the vectors u and v. We denote
the objective function of Eq. 1 by f (w). We say that an optimization method finds an
ε-accurate solution ŵ if f (ŵ) ≤ minw f (w) + ε. The standard SVM problem also
includes an unregularized bias term. We omit the bias throughout the coming sections
and revisit the incorporation of a bias term in Sect. 6.

We describe and analyze in this paper a simple stochastic sub-gradient descent
algorithm, which we call Pegasos, for solving Eq. 1. At each iteration, a single train-
ing example is chosen at random and used to estimate a sub-gradient of the objective,
and a step with pre-determined step-size is taken in the opposite direction. We show
that with high probability over the choice of the random examples, our algorithm
finds an ε-accurate solution using only Õ(1/(λε)) iterations, while each iteration
involves a single inner product between w and x. Put differently, the overall runtime
required to obtain an ε accurate solution is Õ(n/(λε)), where n is the dimensionality of
w and x. Moreover, this runtime can be reduced to Õ(d/(λε)) where d is the number
of non-zero features in each example x. Pegasos can also be used with non-linear
kernels, as we describe in Sect. 4. We would like to emphasize that a solution is
found in probability solely due to the randomization steps employed by the algo-
rithm and not due to the data set. The data set is not assumed to be random, and
the analysis holds for any data set S. Furthermore, the runtime does not depend on
the number of training examples and thus our algorithm is especially suited for large
datasets.

Before indulging into the detailed description and analysis of Pegasos, we would
like to draw connections to and put our work in context of some of the more
recent work on SVM. For a more comprehensive and up-to-date overview of rel-
evant work see the references in the papers cited below as well as the web site
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Pegasos: primal estimated sub-gradient solver for SVM 5

dedicated to kernel methods at http://www.kernel-machines.org. Due to the cen-
trality of the SVM optimization problem, quite a few methods were devised and
analyzed. The different approaches can be roughly divided into the following
categories.

Interior Point (IP) methods IP methods (see for instance [7] and the references therein)
cast the SVM learning task as a quadratic optimization problem subject to linear con-
straints. The constraints are replaced with a barrier function. The result is a sequence
of unconstrained problems which can be optimized very efficiently using Newton or
Quasi-Newton methods. The advantage of IP methods is that the dependence on the
accuracy ε is double logarithmic, namely, log(log(1/ε)). Alas, IP methods typically
require run time which is cubic in the number of examples m. Moreover, the memory
requirements of IP methods are O(m2) which renders a direct use of IP methods very
difficult when the training set consists of many examples. It should be noted that there
have been several attempts to reduce the complexity based on additional assumptions
(see e.g. [15]). However, the dependence on m remains super linear. In addition, while
the focus of the paper is the optimization problem cast by SVM, one needs to bear
in mind that the optimization problem is a proxy method for obtaining good classifi-
cation error on unseen examples. Achieving a very high accuracy in the optimization
process is usually unnecessary and does not translate to a significant increase in the
generalization accuracy. The time spent by IP methods for finding a single accurate
solution may, for instance, be better utilized for trying different regularization values.

Decomposition methods To overcome the quadratic memory requirement of IP meth-
ods, decomposition methods such as SMO [29] and SVM-Light [20] tackle the dual
representation of the SVM optimization problem, and employ an active set of con-
straints thus working on a subset of dual variables. In the extreme case, called row-
action methods [8], the active set consists of a single constraint. While algorithms
in this family are fairly simple to implement and entertain general asymptotic con-
vergence properties [8], the time complexity of most of the algorithms in this family
is typically super linear in the training set size m. Moreover, since decomposition
methods find a feasible dual solution and their goal is to maximize the dual objective
function, they often result in a rather slow convergence rate to the optimum of the
primal objective function. (See also the discussion in [19].)

Primal optimization Most existing approaches, including the methods discussed above,
focus on the dual of Eq. 1, especially when used in conjunction with non-linear ker-
nels. However, even when non-linear kernels are used, the Representer theorem [23]
allows us to re-parametrize w as w =∑

αi yi xi and cast the primal objective Eq. 1 as
an unconstrained optimization problem with the variables α1, . . . , αm (see Sect. 4).
Tackling the primal objective directly was studied, for example, by Chapelle [10], who
considered using smooth loss functions instead of the hinge loss, in which case the
optimization problem becomes a smooth unconstrained optimization problem. Chap-
elle then suggested using various optimization approaches such as conjugate gradient
descent and Newton’s method. We take a similar approach here, however we cope
with the non-differentiability of the hinge-loss directly by using sub-gradients instead
of gradients. Another important distinction is that Chapelle views the optimization
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problem as a function of the variables αi . In contrast, though Pegasos maintains the
same set of variables, the optimization process is performed with respect to w, see
Sect. 4 for details.

Stochastic gradient descent The Pegasos algorithm is an application of a stochas-
tic sub-gradient method (see for example [25,34]). In the context of machine learn-
ing problems, the efficiency of the stochastic gradient approach has been studied in
[1,3,5,6,26,27]. In particular, it has been claimed and experimentally observed that,
“Stochastic algorithms yield the best generalization performance despite being the
worst optimization algorithms”. This claim has recently received formal treatment
in [4,32].

Two concrete algorithms that are closely related to the Pegasos algorithm and are
also variants of stochastic sub-gradient methods are the NORMA algorithm [24] and a
stochastic gradient algorithm due to Zhang [37]. The main difference between Pegasos
and these variants is in the procedure for setting the step size. We elaborate on this issue
in Sect. 7. The convergence rate given in [24] implies that the number of iterations
required to achieve ε-accurate solution is O(1/(λ ε)2). This bound is inferior to the
corresponding bound of Pegasos. The analysis in [37] for the case of regularized loss
shows that the squared Euclidean distance to the optimal solution converges to zero
but the rate of convergence depends on the step size parameter. As we show in Sect. 7,
tuning this parameter is crucial to the success of the method. In contrast, Pegasos is
virtually parameter free. Another related recent work is Nesterov’s general primal-dual
subgradient method for the minimization of non-smooth functions [28]. Intuitively,
the ideas presented in [28] can be combined with the stochastic regime of Pegasos.
We leave this direction and other potential extensions of Pegasos for future research.

Online methods Online learning methods are very closely related to stochastic gradient
methods, as they operate on only a single example at each iteration. Moreover, many
online learning rules, including the Perceptron rule, can be seen as implementing a
stochastic gradient step. Many such methods, including the Perceptron and the Pas-
sive Aggressive method [11] also have strong connections to the “margin” or norm of
the predictor, though they do not directly minimize the SVM objective. Nevertheless,
online learning algorithms were proposed as fast alternatives to SVMs (e.g. [16]).
Such algorithms can be used to obtain a predictor with low generalization error using
an online-to-batch conversion scheme [9]. However, the conversion schemes do not
necessarily yield an ε-accurate solutions to the original SVM problem and their perfor-
mance is typically inferior to direct batch optimizers. As noted above, Pegasos shares
the simplicity and speed of online learning algorithms, yet it is guaranteed to converge
to the optimal SVM solution.

Cutting planes approach Recently, Joachims [21] proposed SVM-Perf, which uses
a cutting planes method to find a solution with accuracy ε in time O(md/(λε2)).
This bound was later improved by Smola et al. [33] to O(md/(λε)). The complex-
ity guarantee for Pegasos avoids the dependence on the data set size m. In addition,
while SVM-Perf yields very significant improvements over decomposition methods
for large data sets, our experiments (see Sect. 7) indicate that Pegasos is substantially
faster than SVM-Perf.
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Fig. 1 The Pegasos algorithm

2 The Pegasos algorithm

As mentioned above, Pegasos performs stochastic gradient descent on the primal
objective Eq. 1 with a carefully chosen stepsize. We describe in this section the core
of the Pegasos procedure in detail and provide pseudo-code. We also present a few
variants of the basic algorithm and discuss few implementation issues.

2.1 The basic Pegasos algorithms

On each iteration Pegasos operates as follow. Initially, we set w1 to the zero vector.
On iteration t of the algorithm, we first choose a random training example (xit , yit ) by
picking an index it ∈ {1, . . . , m} uniformly at random. We then replace the objective
in Eq. 1 with an approximation based on the training example (xit , yit ), yielding:

f (w; it ) = λ

2
‖w‖2 + �(w; (xit , yit )). (3)

We consider the sub-gradient of the above approximate objective, given by:

∇t = λ wt − 1l
[
yit

〈
wt , xit

〉
< 1

]
yit xit , (4)

where 1l [y 〈w, x〉 < 1] is the indicator function which takes a value of one if its argu-
ment is true (w yields non-zero loss on the example (x, y)), and zero otherwise. We
then update wt+1 ← wt −ηt∇t using a step size of ηt = 1/(λt). Note that this update
can be written as:

wt+1 ←
(

1− 1

t

)
wt + ηt 1l

[
yit

〈
wt , xit

〉
< 1

]
yit xit . (5)

After a predetermined number T of iterations, we output the last iterate wT+1. The
pseudo-code of Pegasos is given in Fig. 1.
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2.2 Incorporating a projection step

The above description of Pegasos is a verbatim application of the stochastic
gradient-descent method. A potential variation is the gradient-projection approach
where we limit the set of admissible solutions to the ball of radius 1/

√
λ. To enforce

this property, we project wt after each iteration onto this sphere by performing the
update:

wt+1 ← min
{

1,
1/
√

λ
‖wt+1‖

}
wt+1. (6)

Our initial presentation and implementation of Pegasos [31] included a projection
step, while here we include it as an optional step. However, the newly revised analy-
sis presented in this paper does not require such a projection and establishes almost
the same guarantees for the basic (without projection) Pegasos algorithm. We did
not notice major differences between the projected and unprojected variants in our
experiments (see Sect. 7).

2.3 Mini-batch iterations

In our analysis, we actually consider a more general algorithm that utilizes k examples
at each iteration, where 1 ≤ k ≤ m is a parameter that needs to be provided to the algo-
rithm. That is, at each iteration, we choose a subset At ⊂ [m] = {1, . . . , m}, |At | = k,
of k examples uniformly at random among all such subsets. When k = m each iteration
handles the original objective function. This case is often referred to as batch or deter-
ministic iterations. To underscore the difference between the fully deterministic case
and the stochastic case, we refer to the subsamples in the latter case as mini-batches
and call the process mini-batch iterates. We thus consider the approximate objective
function:

f (w; At ) = λ

2
‖w‖2 + 1

k

∑

i∈At

�(w; (xi , yi )). (7)

Note that we overloaded our original definition of f and that the original objective
can be denoted as f (w) = f (w; [m]). As before, we consider the sub-gradient of the
approximate objective given by:

∇t = λ wt − 1

k

∑

i∈At

1l [yi 〈wt , xi 〉 < 1] yi xi . (8)

We update wt+1 ← wt − ηt∇t using the same predetermined step size ηt = 1/(λt).
Pseudo-code of this more general algorithm is given in Fig. 2. As before, we include
an optional projection step.

When k = m we choose At = S on each round t and we obtain the deterministic
sub-gradient descent method. In the other extreme case, when k = 1, we recover the
stochastic sub-gradient algorithm of Fig. 1.
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Fig. 2 The mini-batch Pegasos
algorithm

In the above description we refer to At as chosen uniformly at random among the
subsets of [m] of size k, i.e. chosen without repetitions. Our analysis still holds when
At is a multi-set chosen i.i.d. with repetitions.

2.4 Sparse feature vectors

We conclude this section with a short discussion of implementation details when the
instances are sparse, namely, when each instance has very few non-zero elements. In
this case, we can represent w as a pair (v, a) where v ∈ R

n is a vector and a is a scalar.
The vector w is defined as w = a v. We do not require the vector v to be normalized
and hence we over-represent w. However, using this representation, it is easily verified
that the total number of operations required for performing one iteration of the basic
Pegasos algorithm (with k = 1) is O(d), where d is the number of non-zero elements
in x.

When projection steps are included, we represent w as a triplet (v, a, ν) with the
following variables ν = ‖w‖ = a ‖v‖. Storing the norm of w allows us to perform the
projection step using a constant number of operations involving only a and ν. After
w is updated, the stored norm ν needs to be updated, which can again be done in time
O(d) as before.

3 Analysis

In this section we analyze the convergence properties of Pegasos. Although our main
interest is in the special case where k = 1 given in Fig. 1, we actually analyze here
the more general mini-batch variant of Fig. 2. Throughout this section we denote

w	 = argmin
w

f (w). (9)

Recall that on each iteration of the algorithm, we focus on an instantaneous objective
function f (w; At ). We start by bounding the average instantaneous objective of the
algorithm relatively to the average instantaneous objective of the optimal solution.
We first need the following lemma which is based on a result from [17], though we
provide the proof here for completeness. The lemma relies on the notion of strongly
convex functions (see for example [30]). A function f is called λ-strongly convex if
f (w)− λ

2‖w‖2 is a convex function.
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Lemma 1 Let f1, . . . , fT be a sequence of λ-strongly convex functions. Let B be a
closed convex set and define 
B(w) = arg minw′∈B ‖w − w′‖. Let w1, . . . , wT+1 be
a sequence of vectors such that w1 ∈ B and for t ≥ 1, wt+1 = 
B(wt −ηt∇t ), where
∇t belongs to the sub-gradient set of ft at wt and ηt = 1/(λt). Assume that for all
t, ‖∇t‖ ≤ G. Then, for all u ∈ B we have

1

T

T∑

t=1

ft (wt ) ≤ 1

T

T∑

t=1

ft (u)+ G2(1+ ln(T ))

2 λ T
.

Proof Since ft is strongly convex and∇t is in the sub-gradient set of ft at wt we have
that (see [30])

〈wt − u,∇t 〉 ≥ ft (wt )− ft (u)+ λ
2‖wt − u‖2. (10)

Next, we show that

〈wt − u,∇t 〉 ≤ ‖wt − u‖2 − ‖wt+1 − u‖2
2 ηt

+ ηt
2 G2. (11)

Let w′t denote wt − ηt∇t . Since wt+1 is the projection of w′t onto B, and u ∈ B we
have that ‖w′t − u‖2 ≥ ‖wt+1 − u‖2. Therefore,

‖wt − u‖2 − ‖wt+1 − u‖2 ≥ ‖wt − u‖2 − ‖w′t − u‖2
= 2ηt 〈wt − u,∇t 〉 − η2

t ‖∇t‖2.

Rearranging the above and using the assumption ‖∇t‖ ≤ G yields Eq. 11. Comparing
Eqs. 10 and 11 and summing over t we obtain

T∑

t=1

( ft (wt )− ft (u))

≤
T∑

t=1

(‖wt − u‖2 − ‖wt+1 − u‖2
2 ηt

+ λ
2‖wt − u‖2

)
+ G2

2

T∑

t=1

ηt .

Next, we use the definition ηt = 1/(λ t) and note that the first sum on the right-hand
side of the above equation collapses to −λ (T + 1) ‖wT+1 − u‖2. Thus,

T∑

t=1

( ft (wt )− ft (u)) ≤ −λ (T + 1) ‖wT+1 − u‖2 + G2

2 λ

T∑

t=1

1

t

≤ G2

2 λ
(1+ ln(T )) .


�
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Based on the above lemma, we are now ready to bound the average instantaneous
objective of Pegasos.

Theorem 1 Assume that for all (x, y) ∈ S the norm of x is at most R. Let w	 be as
defined in Eq. 9 and let c = (

√
λ+ R)2 whenever we perform the projection step and

c = 4 R2 whenever we do not perform the projection step. Then, for T ≥ 3,

1

T

T∑

t=1

f (wt ; At ) ≤ 1

T

T∑

t=1

f (w	; At )+ c(1+ ln(T ))

2λT
.

Proof To simplify our notation we use the shorthand ft (w) = f (w; At ). The update
of the algorithm can be rewritten as wt+1 = 
B(wt − ηt∇t ), where ∇t is defined in
Eq. 8 and B is the Euclidean ball of radius 1/

√
λ if we perform a projection step and

otherwise B = R
n . Thus, to prove the theorem it suffices to show that the conditions

stated in Lemma 1 hold. Since ft is a sum of a λ-strongly convex function (λ
2‖w‖2)

and a convex function (the average hinge-loss over At ), it is clearly λ-strongly convex.
Next, we derive a bound on ‖∇t‖. If we perform a projection step then using the fact
that ‖wt‖ ≤ 1/

√
λ and that ‖x‖ ≤ R combined with the triangle inequality we obtain

‖∇t‖ ≤
√

λ+ R. If we do not perform a projection step then we can first rewrite the
update step as

wt+1 =
(
1− 1

t

)
wt − 1

t λ
vt , (12)

where vt = 1
|At |

∑
i∈At

1lyi 〈wt , xt 〉 < 1yi xi . Therefore, the initial weight of each vi

is 1
λ i and then on rounds j = i + 1, . . . , t it will be multiplied by 1− 1

j = j−1
j . Thus,

the overall weight of vi in wt+1 is

1
λ i

t∏

j=i+1

j−1
j = 1

λ t ,

which implies that we can rewrite wt+1 as

wt+1 = 1

λ t

t∑

i=1

vi . (13)

From the above we immediately get that ‖wt+1‖ ≤ R/λ and therefore ‖∇t‖ ≤ 2R.
Finally, we need to prove that w	∈ B. If we do not perform projections then we have
w	∈R

n = B. Otherwise, we need to show that ‖w	‖ ≤ 1/
√

λ. To do so, we examine
the dual form of the SVM problem and use the strong duality theorem. In its more tra-
ditional form, the SVM learning problem was described as the following constrained
optimization problem,

1

2
‖w‖2 + C

m∑

i=1

ξi s.t. ∀i ∈ [m] : ξi ≥ 0, ξi ≥ 1− yi 〈w, xi 〉 . (14)
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12 S. Shalev-Shwartz et al.

Setting C = 1/(λm) this problem becomes equivalent to our formulation given in
Eqs. 1 and 2. The dual problem of Eq. 14 is,

m∑

i=1

αi − 1

2

∥∥∥∥∥

m∑

i=1

αi yi xi

∥∥∥∥∥

2

s.t. ∀i ∈ [m] : 0 ≤ αi ≤ C. (15)

Let us denote the optimal primal and dual solutions by (w	, ξ 	) and α	, respec-
tively. The primal solution can be written in terms of its dual counterpart as w	 =∑m

i=1 α	
i yi xi . At the optimum value α	, Eq. 15 can be rewritten as,

‖α	‖1 − 1

2
‖w	‖2.

Moreover, from strong duality we know that the primal objective value is equal to the
dual objective value at the optimum, thus

1

2
‖w	‖2 + C ‖ξ 	‖1 = ‖α	‖1 − 1

2
‖w	‖2.

note that ‖α	‖∞ ≤ C = 1
λm . Therefore, ‖α	‖1 ≤ 1/λ and we get that

1

2
‖w	‖2 ≤ 1

2
‖w	‖2 + C ‖ξ 	‖1 = ‖α	‖1 − 1

2
‖w	‖2 ≤ 1

λ
− 1

2
‖w	‖2 .

Rearranging the terms yields ‖w	‖ ≤ 1/
√

λ. The bound in the theorem now follows
from Lemma 1. 
�

We now turn to obtaining a bound on the overall objective f (wt ) evaluated at a
single predictor wt . The convexity of f implies that:

f

(
1

T

T∑

t=1

wt

)
≤ 1

T

T∑

t=1

f (wt ). (16)

Using the above inequality and Theorem 1, we immediately obtain Corollary 1 which
provides a convergence analysis for the deterministic case when k = m where
f (w, At ) = f (w).

Corollary 1 Assume that the conditions stated in Theorem 1 and that At= S for all t .
Let w̄ = 1

T

∑T
t=1 wt . Then,

f (w̄) ≤ f (w	)+ c(1+ ln(T ))

2 λ T
.

When At ⊂ S, Corollary 1 no longer holds. However, Kakade and Tewari [22]
have shown that a similar bound holds with high probability as long as At is sampled
from S.
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Lemma 2 (Corollary 7 in [22]) Assume that the conditions stated in Theorem 1 hold
and that for all t , each element in At is sampled uniformly at random from S (with or
without repetitions). Assume also that R ≥ 1 and λ ≤ 1/4. Then, with a probability
of at least 1− δ we have

1

T

T∑

t=1

f (wt )− f (w	) ≤ 21 c ln(T/δ)

λ T
.

Combining the above with Eq. 16 we immediately obtain the following corrolary.

Corollary 2 Assume that the conditions stated in Lemma 2 hold and let w̄ =
1
T

∑T
t=1 wt . Then, with probability of at least 1− δ we have

f (w̄) ≤ f (w	)+ 21 c ln(T/δ)

λ T
.

The previous corollaries hold for the average hypothesis w̄. In practice, the final
hypothesis, wT+1, often provides better results. We next bridge this gap by providing
a similar convergence rate for a different mechanism of choosing the output vector.
To do so, we first show that at least half of the hypotheses are good.

Lemma 3 Assume that the conditions stated in Lemma 2 hold. Then, if t is selected
at random from [T ], we have with a probability of at least 1

2 that

f (wt ) ≤ f (w	)+ 42 c ln(T/δ)

λ T
.

Proof Define a random variable Z = f (wt ) − f (w	) where the randomness is over
the choice of the index t . From the definition of w	 as the minimizer of f (w) we
clearly have that Z is a non-negative random variable. Thus, from Markov inequality
P[Z ≥ 2 E[Z ]] ≤ 1

2 . The claim now follows by combining the fact that E[Z ] =
1
T

∑T
t=1 f (wt )− f (w	) with the bound given in Lemma 2. 
�

Based on the above lemma we conclude that if we terminate the procedure at a
random iteration, in at least half of the cases the last hypothesis is an accurate solu-
tion. Therefore, we can simply try a random stopping time and evaluate the error of
the last hypothesis.1 The above lemma tells us that on average after two attempts we
are likely to find a good solution.

4 Using Mercer kernels

One of the main benefits of SVMs is that they can be used with kernels rather then
with direct access to the feature vectors x. The crux of this property stems from the

1 To do so, we can simply calculate the objective on the entire data set or estimate it according to a sample
of size O(1/(λ ε)), where ε is the desired accuracy (see [35]).

123



14 S. Shalev-Shwartz et al.

Representer Theorem [23], which implies that the optimal solution of Eq. 1 can be
expressed as a linear combination of the training instances. It is therefore possible to
train and use a SVM without direct access to the training instances, and instead only
access their inner products as specified through a kernel operator. That is, instead of
considering predictors which are linear functions of the training instances x them-
selves, we consider predictors which are linear functions of some implicit mapping
φ(x) of the instances. Training then involves solving the minimization problem:

min
w

λ

2
‖w‖2 + 1

m

∑

(x,y)∈S

�(w; (φ(x), y)), (17)

where

�(w; (φ(x), y)) = max{0, 1− y 〈w, φ(x)〉}. (18)

However, the mapping φ(·) is never specified explicitly but rather through a kernel
operator K (x, x′) = 〈

φ(x), φ(x′)
〉

yielding the inner products after the mapping φ(·).
One possible and rather common approach for solving the optimization problem

17 is to switch to the dual problem, which can be written in terms of inner products
of vectors φ(·). Therefore, the dual problem can be solely expressed using kernel
operators. However, solving the dual problem is not necessary. Following [16,24,10],
the approach we take here is to directly minimize the primal problem while still using
kernels.

We now show that the Pegasos algorithm can be implemented using only kernel
evaluations, without direct access to the feature vectors φ(x) or explicit access to the
weight vector w. For simplicity, we focus on adapting the basic Pegasos algorithm
given in Fig. 1 without the optional projection step. As we have shown in the proof of
Theorem 1 (in particular, Eq. 13), for all t we can rewrite wt+1 as

wt+1 = 1

λ t

t∑

i=1

1lyit

〈
wt , φ(xit )

〉
< 1yit φ(xit ).

For each t , let αt+1 ∈ R
m be the vector such that αt+1[ j] counts how many times

example j has been selected so far and we had a non-zero loss on it, namely,

αt+1[ j] = |{t ′ ≤ t : it ′ = j ∧ y j
〈
wt ′ , φ(x j )

〉
< 1}|.

Instead of keeping in memory the weight vector wt+1, we will represent wt+1, using
αt+1 according to

wt+1 = 1

λ t

m∑

j=1

αt+1[ j] y jφ(x j ).

It is now easy to implement the Pegasos algorithm by maintaining the vector α. The
pseudo-code of this kernelized implementation of Pegasos is given in Fig. 3. Note that
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Fig. 3 The kernelized Pegasos
algorithm

only one element of α is changed at each iteration. It is also important to emphasize
that although the feature mapping φ(·) was used in the above mathematical deriva-
tions, the pseudo-code of the algorithm itself makes use only of kernel evaluations and
obviously does not refer to the implicit mapping φ(·).

Since the iterates wt remain as before (just their representation changes), the guaran-
tees on the accuracy after a number of iterations are still valid. We are thus guaranteed
to find an ε-accurate solution after Õ(1/(λε)) iterations. However, checking for non-
zero loss at iteration t might now require as many as min(t, m) kernel evaluations,
bringing the overall runtime to Õ(m/(λε)). Therefore, although the number of itera-
tions required does not depend on the number of training examples, the runtime does.

It is worthwhile pointing out that even though the solution is represented in terms
of the variables α, we are still calculating the sub-gradient with respect to the weight
vector w. A different approach, that was taken, e.g., by Chapelle [10], is to rewrite
the primal problem as a function of α and then taking gradients with respect to α.
Concretely, the Representer theorem guarantees that the optimal solution of Eq. 17
is spanned by the training instances, i.e. it is of the form, w = ∑m

i=1 α[i]φ(xi ). In
optimizing Eq. 17 we can therefore focus only on predictors of this form, parametrized
through α ∈ R

m . The training objective can then be written in terms of the α variables
and kernel evaluations:

min
α

λ

2

m∑

i, j=1

α[i]α[ j]K (xi , x j )+ 1

m

m∑

i=1

max{0, 1− yi

m∑

j=1

α[ j]K (xi , x j )}. (19)

Now, one can use stochastic gradient updates for solving Eq. 19, where gradients
should be taken w.r.t. α. We emphasize again that our approach is different as
we compute sub-gradients w.r.t. w. Setting the step direction according to the sub-
gradient w.r.t w has two important advantages. First, only at most one new non-zero
α[i] is introduced at each iteration, as opposed to a sub-gradient step w.r.t. α which
will involve all m coefficients. More importantly, the objective given in Eq. 19 is not
necessarily strongly-convex w.r.t. α, even though it is strongly convex w.r.t. w. Thus,
a gradient descent approach using gradients w.r.t. α might require Ω(1/ε2) iterations
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16 S. Shalev-Shwartz et al.

to achieve accuracy ε. Interestingly, Chapelle also proposes preconditioning the gra-
dients w.r.t. α by the kernel matrix, which effectively amounts to taking gradients
w.r.t. w, as we do here. Unsurprisingly given the above discussion, Chapelle observes
much better results with this preconditioning.

5 Other prediction problems and loss functions

So far, we focused on the SVM formulation for binary classification using the hinge-
loss. In this section we show how Pegasos can seamlessly be adapted to other prediction
problems in which we use other loss functions.

The basic observation is that the only place in which we use the fact that �(w; (x, y))

is the hinge-loss (Eq. 2) is when we calculated a sub-gradient of �(w; (x, y)) with
respect to w. The assumptions we made are that � is convex and that the norm of the
sub-gradient is at most R. The generality of these assumptions implies that we can
apply Pegasos with any loss function which satisfies these requirements.

5.1 Examples

Example 1 (Binary classification with the log-loss) Instead of the hinge-loss, other
loss functions can also be used with binary labels y ∈ {+1,−1}. A popular choice is
the log-loss defined as: �(w, (x, y)) = log(1 + exp(−y 〈w, x〉)). It is easy to verify
that the log loss is a convex function whose gradient w.r.t. w satisfies ‖∇‖ ≤ ‖x‖.
Example 2 (Regression with the ε-insensitive loss) We now turn to regression prob-
lems over the reals, that is y ∈ R. The standard Support Vector Regression formulation
uses the loss function defined as �(w; (x, y)) = max{0, | 〈w, x〉 − y| − ε}. This loss
is also convex with a sub-gradient bounded by ‖x‖.
Example 3 (Cost-sensitive multiclass categorization) In multi-class categorization
problems, the goal is to predict a label y ∈ Y where Y is a finite discrete set of
classes. A possible loss function is the so-called cost-sensitive loss defined as:

�(w; (x, y)) = max
y′∈Y

δ(y′, y)− 〈w, φ(x, y)〉 + 〈
w, φ(x, y′)

〉
, (20)

where δ(y′, y) is the cost of predicting y′ instead of y and φ(x, y) is a mapping from
input-label pair (x, y) into a vector space. See for example [11]. The multiclass loss
is again a convex loss function whose sub-gradient is bounded by 2 maxy′ ‖φ(x, y′)‖.
Example 4 (Multiclass categorization with the log-loss) Given the same setting of the
above multiclass example, we can also generalize the log loss to handle multiclass
problems. Omitting the cost term, the multiclass loss amounts to:

�(w; (x, y)) = log

⎛

⎝1+
∑

r �=y

e〈w,φ(x,r)〉−〈w,φ(x,y)〉
⎞

⎠ , (21)

where φ(x, y) is defined above. The log-loss version of the multiclass loss is convex
as well with a bounded sub-gradient whose value is at most, 2 maxy′ ‖φ(x, y′)‖.
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Example 5 (Sequence prediction) Sequence prediction is similar to cost-sensitive
multi-class categorization, but the set of targets, Y , can be very large. For exam-
ple, in phoneme recognition tasks, X is the set of all speech utterances and Y is the set
of all phoneme sequences. Therefore, |Y| is exponential in the length of the sequence.
Nonetheless, if the functions φ and δ adheres to a specific structure then we can
still calculate sub-gradients efficiently and therefore solve the resulting optimization
problem efficiently using Pegasos.

To recap the examples provided above we give a table of the sub-gradients of
some popular loss functions. To remind the reader, given a convex function f (w), a
sub-gradient of f at w0 is a vector v which satisfies:

∀w, f (w)− f (w0) ≥ 〈v, w − w0〉 .

The following two properties of sub-gradients are used for calculating the sub-
gradients in the table below.

1. If f (w) is differentiable at w0, then the gradient of f at w0 is the unique sub-
gradient of f at w0.

2. If f (w) = maxi fi (w) for r differentiable functions f1, . . . , fr , and j =
arg maxi fi (w0), then the gradient of f j at w0 is a sub-gradient of f at w0.

Based on the above two properties, we now show explicitly how to calculate a
sub-gradient for several loss functions. In the following table, we use the notation
z = 〈wt , xi 〉.

Loss function Subgradient

�(z, yi ) = max{0, 1− yi z} vt =
{−yi xi if yi z < 1

0 otherwise

�(z, yi ) = log(1+ e−yi z) vt = − yi
1+eyi z xi

�(z, yi ) = max{0, |yi − z| − ε} vt =
⎧
⎨

⎩

xi if z − yi > ε

−xi if yi − z > ε

0 otherwise

�(z, yi ) = maxy∈Y δ(y, yi )− zyi + zy vt = φ(xi , ŷ)− φ(xi , yi )

where ŷ=arg maxy δ(y, yi )−zyi+zy

�(z, yi ) = log
(

1+∑
r �=yi

ezr−zyi

)
vt =∑

r prφ(xi , r)− φ(xi , yi )

where pr = ezr /
∑

j ez j

6 Incorporating a bias term

In many applications, the weight vector w is augmented with a bias term which is a
scalar, typically denoted as b. The prediction for an instance x becomes 〈w, x〉 + b
and the loss is accordingly defined as,
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� ((w, b); (x, y)) = max{0, 1− y(〈w, x〉 + b)}. (22)

The bias term often plays a crucial role when the distribution of the labels is uneven
as is typically the case in text processing applications where the negative examples
vastly outnumber the positive ones. We now review several approaches for learning
the bias term while underscoring the advantages and disadvantages of each approach.

The first approach is rather well known and its roots go back to early work on pattern
recognition [14]. This approach simply amounts to adding one more feature to each
instance x thus increasing the dimension to n+1. The artificially added feature always
takes the same value. We assume without loss of generality that the value of the con-
stant feature is 1. Once the constant feature is added the rest of the algorithm remains
intact, thus the bias term is not explicitly introduced. The analysis can be repeated
verbatim and we therefore obtain the same convergence rate for this modification.
Note however that by equating the n + 1 component of w with b, the norm-penalty
counterpart of f becomes ‖w‖2 + b2. The disadvantage of this approach is thus that
we solve a relatively different optimization problem. On the other hand, an obvious
advantage of this approach is that it requires no modifications to the algorithm itself
rather than a modest increase in the dimension and it can thus be used without any
restriction on At .

An alternate approach incorporates b explicitly by defining the loss as given in
Eq. 22 while not penalizing for b. Formally, the task is to find an approximate solution
to the following problem:

min
w,b

λ

2
‖w‖2 + 1

m

∑

(x,y)∈S

[1− y(〈w, x〉 + b)]+ . (23)

Note that all the sub-gradients calculations with respect to w remain intact. The sub-
gradient with respect to b is also simple to compute. This approach is also very simple
to implement and can be used with any choice of At , in particular, sets consisting of a
single instance. The caveat of this approach is that the function f ceases to be strongly
convex due to the incorporation of b. Precisely, the objective function f becomes
piece-wise linear in the direction of b and is thus no longer strongly convex. There-
fore, the analysis presented in the previous section no longer holds. An alternative
proof technique yields a slower convergence rate of O(1/

√
T ).

A third method entertains the advantages of the two methods above at the price of
a more complex algorithm that is applicable only for large batch sizes (large values of
k), but not for the basic Pegasos algorithm (with k = 1). The main idea is to rewrite
the optimization problem given in Eq. 23 as minw

λ
2‖w‖2 + g(w; S) where

g(w; S) = min
b

1

m

∑

(x,y)∈S

[1− y(〈w, x〉 + b)]+ . (24)

Based on the above, we redefine f (w; At ) to be λ
2‖w‖2+ g(w; At ). On each iteration

of the algorithm, we find a sub-gradient of f (w; At ) and subtract it (multiplied by ηt )
from wt . The problem however is how to find a sub-gradient of g(w; At ), as g(w; At )
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is defined through a minimization problem over b. This essentially amounts to solving
the minimization problem in Eq. 24. The latter problem is a generalized weighted
median problem that can be solved efficiently in time O(k). The above adaptation
indeed work for the case k = m where we have At = S and we obtain the same rate
of convergence as in the no-bias case. However, when At �= S we cannot apply the
analysis from the previous section to our case since the expectation of f (w; At ) over
the choice of At is no longer equal to f (w; S). When At is large enough, it might
be possible to use more involved measure concentration tools to show that the expec-
tation of f (w; At ) is close enough to f (w; S) so as to still obtain fast convergence
properties.

A final possibility is to search over the bias term b in an external loop, optimizing
the weight vector w using Pegasos for different possible values of b. That is, consider
the objective:

J (b; S) = min
w

1

m

∑

(x,y)∈S

[1− y(〈w, x〉 + b)]+ . (25)

For a fixed b, the minimization problem in Eq. 25 is very similar to SVM training with-
out a bias term, and can be optimized using Pegasos. The objective J (b; S) is convex
in the single scalar variable b, and so J (b; S) can be optimized to within accuracy
ε by binary search using O(log 1/ε) evaluations of J (b; S), i.e. O(log 1/ε) applica-
tions of the Pegasos algorithm. Since this modification introduced only an additional
logarithmic factor, the overall runtime for training an SVM with a bias term remains
Õ(d/(λε)). Although incorporating a regularized or unregularized bias term might
be better in practice, the latter “outer loop” approach is the only method that we are
aware of which guarantees an overall runtime of Õ(d/(λε)).

7 Experiments

In this section we present experimental results that demonstrate the merits of our algo-
rithm. We start by demonstrating the practicality of Pegasos for solving large scale
linear problems, especially when the feature vectors are sparse. In particular, we com-
pare its runtime on three large datasets to the runtimes of the state-of-the-art solver
SVM-Perf [21], a cutting plane algorithm designed specifically for use with sparse
feature vectors, as well as of two more conventional SVM solvers: LASVM [2] and
SVM-Light [20]. We next demonstrate that Pegasos can also be a reasonable approach
for large scale problems involving non-linear kernels by comparing it to LASVM and
SVM-Light on four large data sets using Gaussian kernels. We then investigate the
effect of various parameters and implementation choices on Pegasos: we demonstrate
the runtime dependence on the regularization parameter λ; we explore the empirical
behavior of the mini-batch variant and the dependence on the mini-batch size k; and we
compare the effect of sampling training examples both with and without replacement.

Finally, we compare Pegasos to two previously proposed methods that are based
on stochastic gradient descent: Norma [24] by Kivinen et al. and to the method by
Zhang [37].
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We also include in our experiments a comparison with stochastic Dual Coordinate
Ascent (DCA). Following Pegasos’s initial presentation [31], stochastic DCA was
suggested as an alternative optimization method for SVMs [18]. DCA shares numer-
ous similarities with Pegasos. Like Pegasos, at each iteration only a single (random)
training example (yi , xi ) is considered, and if yi 〈w, xi 〉 < 1, an update of the form
w ← w + ηyi xi is performed. However, the DCA step size η is not predetermined,
but rather chosen so as to maximize the dual objective. DCA’s convergence properties
and the differences between DCA and Pegasos behavior are not yet well understood.
For informational purposes, we include a comparison to DCA in our empirical eval-
uations.

Our implementation of Pegasos is based on the algorithm from Fig. 1, outputting the
last weight vector rather than the average weight vector, as we found that in practice
it performs better. We did not incorporate a bias term in any of our experiments. We
found that including an unregularized bias term does not significantly change the
predictive performance for any of the data sets used. Furthermore, most methods we
compare to, including [18,21,24,37], do not incorporate a bias term either. Nonethe-
less, there are clearly learning problems where the incorporation of the bias term could
be beneficial.

We used our own implementation of Pegasos, as well as stochastic DCA, and both
were instrumented to periodically output the weight vector w or, in the kernel case,
the vector of coefficients α. The source code for SVM-Perf, LASVM and SVM-Light
were downloaded from their respective authors’ web pages, and were similarly mod-
ified. These modifications allowed us to generate traces of each algorithm’s progress
over time, which were then used to generate all plots and tables. Whenever a runtime
is reported, the time spent inside the instrumentation code, as well as the time spent
loading the data file, is not included. All implementations are in C/C++, and all exper-
iments were performed on a single core of a load-free machine with an Intel Core i7
920 CPU and 12G of RAM.

7.1 Linear kernel

Our first set of experiments, which evaluate the performance of Pegasos in construct-
ing linear SVMs, were performed on three large datasets with very different feature
counts and sparsity, which were kindly provided by Thorsten Joachims. The astro-ph
dataset classifies abstracts of papers from the physics ArXiv according to whether
they belong in the astro-physics section; CCAT is a classification task taken from the
Reuters RCV1 collection; and cov1 is class 1 of the covertype dataset of Blackard,
Jock & Dean. The following table provides details of the dataset characteristics, as
well as the value of the regularization parameter λ used in the experiments (all of
which are taken from [21]):

Dataset Training size Testing size Features Sparsity (%) λ

astro-ph 29,882 32,487 99,757 0.08 5× 10−5

CCAT 781,265 23,149 47,236 0.16 10−4

cov1 522,911 58,101 54 22.22 10−6
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Fig. 4 Comparison of linear SVM optimizers. Primal suboptimality (top row) and testing classification
error (bottom row), for one run each of Pegasos, stochastic DCA, SVM-Perf, and LASVM, on the astro-ph
(left), CCAT (center) and cov1 (right) datasets. In all plots the horizontal axis measures runtime in seconds

Figure 4 contains traces of the primal suboptimality, and testing classification error,
achieved by Pegasos, stochastic DCA, SVM-Perf, and LASVM. The latter of these is
not an algorithm specialized for linear SVMs, and therefore should not be expected
to perform as well as the others. Neither Pegasos nor stochastic DCA have a natural
stopping criterion. Hence, in order to uniformly summarize the performance of the
various algorithms, we found the first time at which the primal suboptimality was less
than some predetermined termination threshold ε. We chose this threshold for each
dataset such that a primal suboptimality less than ε guarantees a classification error
on test data which is at most 1.1 times the test data classification error at the optimum.
(For instance, if full optimization of SVM yields a test classification error of 1%, then
we chose ε such that a ε-accurate optimization would guarantee test classification
error of at most 1.1%.) The time taken to satisfy the termination criterion, on each
dataset, for each algorithm, along with classification errors on test data achieved at
termination, are reported in Table 1.

Based both on the plots of Fig. 4, and on Table 1, we can see that, SVM-Perf is a very
fast method on it own. Indeed, SVM-Perf was shown in [21] to achieve a speedup over
SVM-Light of several orders of magnitude on most datasets. Nonetheless, Pegasos
and stochastic DCA achieve a significant improvement in run-time over SVM-Perf.
It is interesting to note that the performance of Pegasos does not depend on the num-
ber of examples but rather on the value of λ. Indeed, the runtime of Pegasos for the
Covertype dataset is longer than its runtime for CCAT, although the latter dataset is
larger. This issue is explored further in Sect. 7.3 given in the sequel.
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Table 1 Training runtime and test error achieved (in parentheses) using various optimization methods on
linear SVM problems

Dataset Pegasos SDCA SVM-Perf LASVM

astro-ph 0.04s (3.56%) 0.03s (3.49%) 0.1s (3.39%) 54s (3.65%)

CCAT 0.16s (6.16%) 0.36s (6.57%) 3.6s (5.93%) > 18000s
cov1 0.32s (23.2%) 0.20s (22.9%) 4.2s (23.9%) 210s (23.8%)

The suboptimality thresholds used for termination are ε = 0.0275, 0.00589 and 0.0449 on the astro-ph,
CCAT and cov1 datasets (respectively). The testing classification errors at the optima of the SVM objectives
are 3.36, 6.03 and 22.6%

7.2 Experiments with Gaussian kernels

Pegasos is particularly well suited for optimization of linear SVMs, in which case the
runtime does not depend on the data set size. However, as we show in the sequel, the
kernelized Pegasos variant described in Sect. 4 gives good performance on a range
of kernel SVM problems, provided that these problems have sufficient regularization.
Although Pegasos does not outperform state-of-the-art methods in our experiments, it
should be noted that Pegasos is a very simple method to implement, requiring only a
few lines of code.

The experiments in this section were performed on four datasets downloaded from
Léon Bottou’s LASVM web page.2 The USPS and MNIST datasets were used for the
task of classifying the digit 8 versus the rest of the classes. In the following table, γ

is the parameter controlling the width of the Gaussian kernel K (x, y) = e−γ ‖x−y‖22 ,
and λ is the Pegasos regularization parameter.

Dataset Training size Testing size γ λ

Reuters 7,770 3,299 1 1.29× 10−4

Adult 32,562 16,282 0.05 3.07× 10−5

USPS 7,329 1,969 2 1.36× 10−4

MNIST 60,000 10,000 0.02 1.67× 10−5

The parameters for the Reuters dataset are taken from [2], while those for the Adult
dataset are from [29]. The parameters for the USPS and MNIST datasets are based on
those in [2], but we increased the regularization parameters by a factor of 1,000. This
change resulted in no difference in the testing set classification error at the optimum
on the USPS dataset, and increased it from 0.46 to 0.57% on MNIST. We discuss the
performance of Pegasos with smaller values of the regularization parameter λ in the
next section.

Figure 5 contains traces of the primal suboptimalities in both linear and log scales,
and the testing classification error, achieved by Pegasos, stochastic DCA, SVM-Light,
and LASVM. As in the linear experiments, we chose a primal suboptimality threshold
for each dataset which guarantees a testing classification error within 10% of that
at the optimum. The runtime required to achieve these targets, along with the test
classification errors, are reported in Table 2.

2 http://leon.bottou.org/projects/lasvm.
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Fig. 5 Comparison of kernel SVM optimizers. Primal suboptimality (top row), primal suboptimality in
log scale (middle row) and testing classification error (bottom row), for one run each of Pegasos, stochastic
DCA, SVM-Light, and LASVM, on the Reuters (left column), Adult (center column) and USPS (right
column) datasets. Plots of traces generated on the MNIST dataset (not shown) appear broadly similar to
those for the USPS dataset. The horizontal axis is runtime in seconds

Table 2 Training runtime and test error achieved (in parentheses) using various optimization methods on
linear SVM problems

Dataset Pegasos SDCA SVM-Light LASVM

Reuters 15s (2.91%) 13s (3.15%) 4.1s (2.82%) 4.7s (3.03%)

Adult 30s (15.5%) 4.8s (15.5%) 59s (15.1%) 1.5s (15.6%)

USPS 120s (0.457%) 21s (0.508%) 3.3s (0.457%) 1.8s (0.457%)

MNIST 4200s (0.6%) 1800s (0.56%) 290s (0.58%) 280s (0.56%)

ε = 0.00719, 0.0445, 0.000381 and 0.00144 on the Reuters, Adult, USPS and MNIST datasets (respec-
tively). The testing classification errors at the optima of the SVM objectives are 2.88, 14.9, 0.457 and
0.57%

As in the linear case, Pegasos (and stochastic DCA) achieve a reasonably low value
of the primal objective very quickly, much faster than SVM-Light. However, on the
USPS and MNIST datasets, very high optimization accuracy is required in order to
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Table 3 Relative kernel evaluation throughputs: the number of kernel evaluations per second of runtime
divided by Pegasos’s number of kernel evaluations per second of runtime on the same dataset

Dataset Pegasos SDCA SVM-Light LASVM

Reuters 1 1.03 1.14 0.88
Adult 1 0.90 0.94 0.60
USPS 1 0.97 0.69 0.81
MNIST 1 0.94 0.99 0.61

achieve near-optimal predictive performance, and such accuracy is much harder to
achieve using the stochastic methods. Note that the test error on these data sets is very
small (roughly 0.5%).

Furthermore, when using kernels, LASVM essentially dominates Pegasos and sto-
chastic DCA, even when relatively low accuracy is required. On all four datasets,
LASVM appears to enjoy the best properties of the other algorithms: it both makes
significant progress during early iterations, and converges rapidly in later iterations.
Nevertheless, the very simple method Pegasos still often yields very good predictive
performance, with a competitive runtime.

It can also be interesting to compare the different methods also in terms of the num-
ber of kernel evaluations performed. All of the implementations use the same sparse
representation for vectors, so the amount of time which it takes to perform a single
kernel evaluation should, for each dataset, be roughly the same across all four algo-
rithms. However, various other factors, such overhead resulting from the complexity
of the implementation, or caching of portions of the kernel matrix, do affect the num-
ber of kernel evaluations which are performed in a given unit of time. Nevertheless,
the discrepancy between the relative performance in terms of runtime and the relative
performance in terms of number of kernel evaluations is fairly minor. To summarize
this discrepancy, we calculated for each method and each data set the kernel evaluation
throughput: the number of kernel evaluations performed per second of execution in the
above runs. For each data set, we then normalized these throughputs by dividing each
method’s throughput by the Pegasos throughput, thus obtaining a relative measure
indicating whether some methods are using much more, or much fewer, kernel eval-
uations, relative to their runtime. The resulting relative kernel evaluation throughputs
are summarized in Table 3. It is unsurprising that Pegasos and stochastic DCA, as the
simplest algorithms, tend to have performance most dominated by kernel evaluations.
If we were to compare the algorithms in terms of the number of kernel evaluations,
rather than elapsed time, then LASVMs performance would generally improve slightly
relative to the others. But in any case, the change to the relative performance would
not be dramatic.

7.3 Effect of the regularization parameter λ

We return now to the influence of the values of the regularization parameter λ on the
runtime of Pegasos and stochastic DCA. Recall that in the previous section, we choose
to use a much larger value of λ in our experiments with the MNIST and USPS datasets.
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Fig. 6 Demonstration of
dependence of Pegasos’
performance on regularization,
on the USPS dataset. This plot
shows (on a log-log scale) the
primal suboptimalities of
Pegasos and stochastic DCA
after certain fixed numbers of
iterations, for various values of λ
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Figure 6 shows the suboptimalities of the primal objective achieved by Pegasos and
stochastic DCA after certain fixed numbers of iterations, on the USPS dataset, as a
function of the regularization parameter λ. As predicted by the formal analysis, the pri-
mal suboptimality after a fixed number of Pegasos iterations is inversely proportional
to λ. Hence, the runtime to achieve a predetermined suboptimality threshold would
increase in proportion to λ. Very small values of λ (small amounts of regularization)
result in rather long runtimes. This phenomenon has been observed before and there
have been rather successful attempts to improve Pegasos when λ is small (see for
example [13]).

It is interesting to note that stochastic DCA does not seem to suffer from this prob-
lem. Although Pegasos and stochastic DCA have comparable runtimes for moderate
values of λ, stochastic DCA is much better behaved when λ is very small (i.e. when
the problem is barely infused with regularization).

7.4 Experiments with the mini-batch variant

In this section, we explore the influence of the mini-batch size, k, OF the mini-batch
variant of Fig. 2. Increasing k does not reduce our theoretical guarantees on the num-
ber of iterations T that are required to attain a primal suboptimality goal. Since the
runtime of each iteration scales linearly with k, the convergence analysis suggests that
increasing k would only cause a linear increase in the overall runtime kT required to
achieve a predetermined accuracy goal. We show that in practice, for moderate sizes
of k, a roughly linear (in k) improvement in the number of required iterations T can
be achieved, leaving the overall runtime kT almost fixed. For a serial implementation
of Pegasos, this result would be uninteresting. However, using large samples for com-
puting the subgradients can be useful in a parallel implementation, where the O(k)
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Fig. 7 The effect of the mini-batch size on the runtime of Pegasos for the astro-ph dataset. The first plot
shows the primal suboptimality achieved for certain fixed values of overall runtime kT , for various values
of the mini-batch size k. The second plot shows the primal suboptimality achieved for certain fixed values
of k, for various values of kT . Very similar results were achieved for the CCAT dataset

work of each iteration could be done in parallel, thus reducing the overall required
elapsed time.

Figure 7 includes two plots which illustrate the impact of k on the performance of
Pegasos. The first plot shows that, on the astro-ph dataset, for sufficiently small values
of k, the primal suboptimality achieved after T iterations is roughly proportional to
the product kT . This property holds in the region for which the curves are roughly
horizontal, which in this experiment, corresponds to mini-batch sizes of up to a few
hundred training points.

Note also that the three curves on the left hand side plot of Fig. 7 start increasing
at different values of k. It appears that, when k is overly large, there is initially indeed
a loss of performance. However, as the number of iterations increases, the slower
behavior due to the mini-batch size is alleviated.

The second plot further underscores this phenomenon. We can see that, for three
values of k, all significantly greater than 100, the experiments with the largest mini-
batch size made the least progress while performing the same amount of computation.
However, as the number of iterations grows, the suboptimalities become similar. The
end result is that the overall runtime does not seem to be strongly dependent on the
mini-batch size. We do not yet have a good quantitative theoretical understanding of
the mini-batch results observed here.

7.5 Comparison of sampling procedures

The analysis of Pegasos requires sampling with replacement at each iteration. Based
on private communication with Léon Bottou we experimented with sampling without
replacement. Specifically, we chose a random permutation over the training examples
and performed updates in accordance to the selected order. Once we traversed all the
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Fig. 8 The effect of different
sampling methods on the
performance of Pegasos for the
astro-ph dataset. The curves
show the primal suboptimality
achieved by uniform i.i.d.
sampling, sampling from a fixed
permutation, and sampling from
a different permutation for every
epoch
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permuted examples, we chose a new permutation and iteratively repeated the process.
We also experimented with a further simplified approach in which a single random
permutation is drawn and then used repeatedly.

Figure 8 indicates that, on the astro-ph dataset, the sampling without replacement
procedures outperform significantly the uniform i.i.d. sampling procedure. Further, it
seems that choosing a new permutation every epoch, rather than keeping the permuta-
tion intact, provides some slight further improvement. We would like to note though
that while the last experiment underscores the potential for additional improvement in
the convergence rate, the rest of the experiments reported in the paper were conducted
in accordance with the formal analysis using uniform sampling with replacements.

7.6 Comparison to other stochastic gradient methods

In our last set of experiments, we compared Pegasos to Norma [24] and to a variant of
stochastic gradient descent due to Zhang [37]. Both methods share similarities with
Pegasos when k = 1, and differ in their schemes for setting the learning rate ηt . The-
orem 4 from [24], suggests to set ηt = p/(λ

√
t), where p ∈ (0, 1). Based on the

bound given in the theorem, the optimal choice of p is 0.5(2+ 0.5T−1/2 )1/2, which
for t ≥ 100 is in the range [0.7, 0.716]. Plugging the optimal value of p into Theo-
rem 4 in [24] yields the bound O(1/(λ

√
T )). We therefore conjectured that Pegasos

would converge significantly faster than Norma. On the left hand side of Fig. 9 we
compare Pegasos (with the optional projection step) to Norma on the Astro-Physics
dataset. We divided the dataset to a training set with 29,882 examples and a test set
with 32,487 examples. We report the final objective value and the average hinge-loss
on the test set. As in [21], we set λ = 2×10−4. It is clear from the figure that Pegasos
outperforms Norma. Moreover, Norma fails to converge even after 106 iterations. The
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Fig. 9 Comparisons of Pegasos to Norma (left), and Pegasos to stochastic gradient descent with a fixed
learning rate (right) on the Astro-Physics datset. In the left hand side plot, the solid curves designate the
objective value while the dashed curves show the test loss

poor performance of Norma can be attributed to the fact that the value of λ here is
rather small.

We now turn to comparing Pegasos to the algorithm of Zhang [37] which simply
sets ηt = η, where η is a (fixed) small number. A major disadvantage of this approach
is that finding an adequate value for η is a difficult task on its own. Based on the analy-
sis given in [37] we started by setting η to be 10−5. Surprisingly, this value turned out
to be a poor choice and the optimal choice of η was substantially larger. On the right
hand side of Fig. 9 we illustrate the convergence of stochastic gradient descent with
ηt set to be a fixed value from the set {0.001, 0.01, 0.1, 1, 10}. It is apparent that for
some choices of η the method converges at about the same rate of Pegasos while for
other choices of η the method fails to converge. For large datasets, the time required
for evaluating the objective is often much longer than the time required for training
a model. Therefore, searching for η is significantly more expensive than running the
algorithm a single time. The apparent advantage of Pegasos is due to the fact that we
do not need to search for a good value for η but rather have a predefined schedule
for ηt .

8 Conclusions

We described and analyzed a simple and effective algorithm for approximately mini-
mizing the objective function of SVM. We derived fast rate of convergence results and
experimented with the algorithm. Our empirical results indicate that for linear kernels,
Pegasos achieves state-of-the-art results, despite of, or possibly due to, its simplicity.
When used with more complex kernels, Pegasos may still be a simple competitive
alternative to more complicated methods, especially when fairly lax optimization can
be tolerated.

Recently, Bottou and Bousquet [4] proposed to analyse optimization algorithms
from the perspective of the underlying machine learning task. In a subsequent
paper [32], we analyze Pegasos and other SVM training methods from a machine
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learning perspective, and showed that Pegasos is more efficient than other methods
when measuring the runtime required to guarantee good predictive performance (test
error).
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